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1 Problem

Let Ω be a compact domain, and will be interested in minimization problem involving the
sum of three or four terms, namely

min
µ∈P(Ω)

EV (µ) + EW (µ) + EF (µ), (1.1)

min
µ∈P(Ω)

Tc(µ, ν) + EV (µ) + EW (µ) + EF (µ), (1.2)

where in the second case the probability measure ν is given and Tc(µ, ν) denotes the
minimal transport cost between µ and ν with a cost function c. The functionals EV , EW
and EF are called potential, interaction and internal energy and are defined as follows:

• The potential energy EV is associated to a potential V : Ω→ R∪{+∞} and defined
as

EV (µ) :=

∫
Ω
V dµ

It tends to attract the mass of µ towards areas where V is minimal.

• The interaction energy EW is a sort of potential energy associated to pairs of parti-
cles, associated to a potential W : Ω→ R ∪ {+∞} and defined as

EV (µ) :=

∫
Ω

∫
Ω
W (x− y)dµ(x)dµ(y).

This term can both be attractive (W (z) = ‖z‖2) or repulsive (W (z) = − log(‖z‖)).
• The internal energy is a generalization of the mathematical entropy1 ρ ∈ Pac 7→∫

Ω ρ log ρ, and is repulsive as it favors mass distributions that are evenly spread in
the domain. To define it, one needs a function F : R+ → R ∪ {+∞},

EF (µ) =

{∫
Ω F (ρ(x))dx if µ� λ and ρ := dµ

dλ

+∞ if not,
(1.3)

where λ is the Lebesgue measure.

Minimization problems of the type (4.7) and (1.2) occur very frequently in mathemati-
cal physics, chemistry, machine learning, economics, biology. Before treating existence,
uniqueness of minimisers and optimality conditions, we need some definitions and impor-
tant properties.

1Note that the mathematical entropy is equal to minus the physical entropy. In particular, it decreases
in time when evaluated e.g. on solutions of the heat equation.
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Definition 1.1 (Wasserstein (or Monge-Kantorovich) distance). Let µ, ν ∈ P(Ω) and
p ∈ [1,+∞), we set

Wp(µ, ν) = Tc(µ, ν)
1
p ,

for c(x, y) = d(x, y)p and d is a distance on Ω (we will always consider d(x, y)p = |x− y|p.
We refer to Wp as the p−Wasserstein (or Monge-Kantorovich) distance.

Proposition 1.2. Let Ω a compact domain. Wp is a distance over P(Ω)

Theorem 1.3. If Ω ⊂ Rd is compact and p ∈ [1,+∞), in the space (P(Ω),Wp), we have
µn ⇀ µ if and only if Wp(µn, µ)→ 0.

Theorem 1.4 (Existence and uniqueness of optimal transport map). Given µ, ν ∈ P(Ω),
where Ω is a compact domain, there exists an optimal transport plan for the cost c(x, y) =
h(x − y), with h strictly convex. It is unique and of the form (Id, T )]µ, provided µ is
absolutely continuous and ∂Ω is negligible. Moreover, there exists a Kantorovich potential
ϕ and T and the potential ϕ are linked by

T (x) = x− (∇h)−1(∇ϕ(x)).

2 Existence of minimizers to (4.7)

Since Ω is bounded, probability measures in P(Ω) automatically have bounded second
moment. Therefore, W2 metrizes the topology induced by Cb(Ω) = C0(Ω), and (P(Ω),W2)
is compact.

Proposition 2.1. If V and W are lower semi-continuous, then the energies EV (resp.
EW ) are lower semi-continuous on P(Ω) with respect to narrow convergence. Moreover,
EV is convex.

Proof. For EV , the proof is the same as for the lower semi-continuity of the optimal
transport problem (i.e. write V = supk Vk where Vk is k-Lipschitz and bounded and
pointwise increading in k). The same strategy works for EW , but in addition one has to
prove that if (µk) converges narrowly to µ, then (µk⊗µk) converges narrowly to µ⊗µ.

Lemma 2.2. Let (µk)k and (νk)k be sequences in P(Ω) converging narrowly to µ, ν. Then,
µk ⊗ νk converges narrowly to µ⊗ ν.

Proof. Let ϕ,ψ ∈ C0(Ω). Then, by hypothesis,∫
ϕ⊗ ψdµk ⊗ νk =

(∫
ϕdµk

)(∫
ψdνk

)
k→+∞−−−−→

∫
ϕ⊗ ψdµ⊗ ν,

so that A is the algebra generated by the set {ϕ⊗ ψ | ϕ ∈ C0(Ω)}, then

∀f ∈ A,

∫
fdµk ⊗ νk

k→+∞−−−−→
∫
fdµ⊗ ν.

By Stone-Weierstrass, this algebra is dense in C0(Ω×Ω), showing that µk ⊗ νk converges
narrowly to µ⊗ ν.

Proposition 2.3. Let Ω ⊆ Rd compact and let F : R+ → R ∪ {+∞} be convex, lower
semicontinuous, and superlinear (i.e. limr→+∞ F (r)/r = +∞), then EF is lower semi-
continuous on P(Ω) and convex along curves of the form t 7→ (1− t)ρ0 + tρ1.
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Proof. Let F ∗ : t 7→ supt>0 st − F (t), so that F ∗(s) + F (t) > st. By superlinearity, one
can see that F ∗ : t 7→ supt>0 st − F (t) is finite on R+, and therefore continous on R+.
If µ ∈ P(Ω) has density ρ with respect to the Lebesgue measure, then for any bounded
measurable function f ,

EF (µ) =

∫
F (ρ)dλ >

∫
ρf − F ∗(f)dλ.

Moreover, by Fenchel-Moreau theorem (F = F ∗∗ for F convex l.s.c.), one has F (s) =
F ∗∗(s) = supt∈R st− F ∗(t). We therefore get

∀µ ∈ Pac(Ω), EF (µ) = sup
f measurable bounded

∫
fdµ−

∫
F ∗(f)dλ.

We now define

EF (µ) = sup
f∈C0(Ω)

∫
fdµ−

∫
F ∗(f)dλ,

and show that

∀µ ∈ P(Ω), EF (µ) = sup
f measurable bounded

∫
fdµ−

∫
F ∗(f)dλ.

Since the space of continuous functions is included in the space of measurable bounded
function, we automatically have one inequality. To show the other inequality, we need to
approximate measurable bounded functions by continuous ones. Using Lusin’s theorem,
for any f : Ω → R measurable, we have the existence of K ⊆ Ω compact and g ∈ C0(Ω)
such that f |K = g|K and (λ + µ)(Ω \K) 6 ε. Moreover, one can impose that ‖g‖∞ 6
‖f‖∞ + diam(Ω). Then,∣∣∣∣∫ fdµ−

∫
gdµ

∣∣∣∣ =

∣∣∣∣∣
∫

Ω\K
(f − g)dµ

∣∣∣∣∣ 6 ε(2 ‖f‖∞ + diam(Ω)).

∣∣∣∣∫ F ∗(f)dλ−
∫
F ∗(g)dλ

∣∣∣∣ =

∣∣∣∣∣
∫

Ω\K
(F ∗(f)− F ∗(g))dλ

∣∣∣∣∣ 6 2ε max
[0,‖f‖∞+diam(Ω)]

|F ∗| .

Since this can be done for any ε > 0, the second inequality is established.
This shows that EF = EF on Pac(Ω). Now, let µ ∈ P(Ω) \ Pac(Ω). This implies the

existence of a set S ⊆ Ω such that λ(S) = 0 and µ(S) > 0. Defining f = N1S for N ∈ N
we get

EF (µ) > Nµ(S)− λ(Ω)F ∗(0)
N→+∞−−−−−→ +∞.

Therefore EF coincides with convex lsc function EF .

Proposition 2.4. Given any σ ∈ P(Ω) and c(x, y) = h(x− y) with h strictly convex, the
function ρ ∈ P(Ω) 7→ Tc(σ, ρ) is convex along curves of the form ρt = (1 − t)ρ0 + tρ1,
and it is even strictly convex if σ ∈ Pac(Ω). Moreover, assume there exists a unique pair
(ψcρ, ψρ) of Kantorovich potentials between ρ and σ, then δTc(σ,·)

δµ (ρ) = ψρ.

Proof. Let ρ0, ρ1 ∈ P(Ω) and γi ∈ Π(σ, ρi) be optimal transport plans. Then γt = (1 −
t)γ0 + tγ1 is a transport plan between σ and ρt = (1− t)ρ0 + tρ1 so that

Tc(σ, ρt) 6
∫
h(x− y)dγt(x, y) 6 (1− t)Tc(σ, ρ0) + tTc(σ, ρ1).
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If σ is absolutely continuous, γi = (id, Ti)#ρi where Ti is an optimal transport map
between σ and ρi. Assume by contradiction that ρ0 6= ρ1 and t ∈ (0, 1) are such that

Tc(σ, ρt) = (1− t)Tc(σ, ρ0) + tTc(σ, ρ1) = h(x− y)dγt(x, y).

Thus, γt is the unique optimal transport plan between σ and ρt, i.e. γt = (id, Tt)#σ where
Tt is the optimal transport map between σ and ρt. Thus,

(id, Tt)#σ = (1− t)(id, T0)#σ + t(id, T1)#σ.

If 0 < t < 1, since γt must be induced by an optimal transport map, we get that T0 =
T1 = Tt σ-almost everywhere. But this is a contradiction with ρ0 6= ρ1 and proves strict
convexity. We now have to prove that δTc(σ,·)

δµ (ρ) = ψρ. Take ρε = ρ+ εχ with χ = ρ̃− ρ
and estimate the ration (Tc(σ, ρε) − Tc(σ, ρ))/ε. By using that (ψcρ, ψρ) is optimal for ρ
but not necessarily for ρε we get

Tc(σ, ρε)− Tc(σ, ρ)

ε
>

∫
ψρdρε +

∫
ψcρdσ −

∫
ψρdρ−

∫
ψcρdσ

ε
=

∫
ψρdχ,

which give the lower bound lim infε→0(Tc(σ, ρε) − Tc(σ, ρ))/ε >
∫
ψρdχ. Consider now a

sequence of values of εk realising the limp, then we can estimate the same ratio using the
optimality of the pair (ψcεk , ψεk) between ρεk and σ and get

Tc(σ, ρεk)− Tc(σ, ρ)

εk
6

∫
ψεkdρεk +

∫
ψcεkdσ −

∫
ψεkdρ−

∫
ψcεkdσ

εk
=

∫
ψεkdχ,

and we now have to pass to the limit in k. As in the proof of existence for the dual problem
we have uniform convergence (up to a subsequence) (ψcεk , ψεk)→ (ψc, ψ) and (ψc, ψ) must
be optimal for the transport between ρ and σ. By uniqueness we have that ψρ = ψ. We
finally obtain that lim supε→0(Tc(σ, ρε)− Tc(σ, ρ))/ε 6

∫
ψρdχ.

Remark 2.5. A direct consequence of the theorem above is the (strict) convexity of Wp
p

with p > 1.

As a consequence, (1.2) admits a uniques solution if EW = 0.

3 Optimality conditions

Here we will deal in more details with the following example, where σ ∈ P(Ω):

J(ρ) =
1

2τ
W2

2(σ, ρ) +

∫
V dρ+

∫
ρ log ρ, (3.4)

where we assume that V is a Lipschitz on the compact domain Ω.

Proposition 3.1. J admits a unique minimiser on Ω, denoted ρ. Moreover:

• ρ > 0 a.e.

• log(ρ) ∈ L1(Ω)

• if (ϕ,ψ) ∈ Lip(Ω)2 are Kantorovich potentials associated to the optimal transport
problem between ρ and σ, then

ϕ

2τ
+ V + log ρ = C a.e.
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• log ρ ∈ Lip(Ω), and if T = id− ∇ϕ2 is the optimal transport map between ρ and σ,

id− T
2τ

+∇V +∇ log ρ = 0 a.e.

Proof. Step 1. Let χ be the probability measure with constant positive density κ = 1
|Ω|

on Ω. We let ρε = (1− ε)ρ+ εχ. Then, by convexity of ε 7→W2
2(σ, ρε),

W2
2(σ, ρε) 6 W2

2(σ, ρ) + ε(W2
2(σ, χ)−W2

2(σ, ρ))

and by convexity of ε 7→ EV (ρε),

EV (ρε) 6 EV (ρ) + ε(EV (χ)− EV (ρ)).

We will now upper bound the internal energy EF (ρε). Let D ⊆ Ω be a measurable set on
which ρ vanishes. First, ∫

D
ρε log ρε = εκ log(εκ)|D|

Second, by convexity of F (r) = r log r, and using F ′(r) = log r + 1 we have

F (ρ) > F (ρε) + (ρ− ρε)F ′(ρε)
= F (ρε) + ε(ρ− κ)(log(ρε) + 1)

> F (ρε) + ε(ρ− κ)(log(κ) + 1)

so that
EF (ρε) 6 EF (ρ) + εκ log(εκ)|D| − ε

∫
Ω\D

(ρ− κ)(log(κ) + 1).

Finally we have
J(ρ) 6 J(ρε) 6 J(ρ) + εκ log(εκ)|D|+ Cε,

implying that −κ log(εκ)|D| 6 C. Letting ε→ 0 we get a contradiction unless λΩ(D) = 0.
Step 2. Let us now show that log(ρ) ∈ L1(Ω). We already know that

(ρ− κ)(log(ρ) + 1) > (ρ− κ)(log(κ) + 1),

and this lower bound is integrable. In addition, using the same arguments as above and
Fatou’s lemma we get∫

Ω
(ρ− κ)(log(ρε) + 1) 6 C =⇒

∫
Ω

(ρ− κ)(log(ρ) + 1) 6 C.

We therefore get that (ρ−κ)(log(ρ) + 1) ∈ L1(Ω). Since in addition ρ and ρ log ρ ∈ L1(Ω)
we get log ρ ∈ Ω.

Step 3. Let χ ∈ P(Ω) ∩ L∞(Ω) and ρε = (1− ε)ρ+ εχ. Then, one can show that

d

dε

∣∣∣∣
ε=0

W2
2(σ, ρε) =

∫
ϕd(χ− ρ).

Easy computations also show

d

dε

∣∣∣∣
ε=0

EF (ρε) + EV (ρε) =

∫
(log ρ+ V )χ,
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thus implying by optimality of ρ that

∀χ ∈ P(Ω) ∩ L∞(Ω),

∫
ϕ+ log ρ+ V d(χ− ρ) > 0.

Set g = ϕ+ log ρ+ V . The previous inequality can be reformulated as

∀χ ∈ P(Ω) ∩ L∞(Ω),

∫
gdχ >

∫
gdρ.

This implies that ρ is supported on the set {x | g(x) = `} where ` is the essential infimum
of g. Since spt(ρ) = Ω, this shows that g is constant.

Remark 3.2 (Gradient flow in the Wasserstein space). One can look at (3.4) of an iterate
of the following gradient flow scheme

ρ(k+1)
τ ∈ argmin

1

2τ
W2

2(ρ, ρ(k)
τ ) +

∫
V dρ+

∫
ρ log ρ.

It can be shown that at the limit τ → 0 one can find a solution to the equation

∂tρ−∆ρ− div(ρ∇V ) = 0,

with no-flux boundary condition.

4 Convexity along geodesics and generalized geodesics

For simplifying the exposition, we will study geodesic convexity only on the set of abso-
lutely continuous measures, and for the exponent p = 2 only. Given two measures µ0, µ1 in
Pac

2 (Rd) (:=the space of ac probability measures having finite second moment), we recall
that the unique minimizing geodesic between µ0 and µ1 is given by

µt := [(1− t)id + tT ]#µ0,

where T is the optimal transport plan between µ0 and µ1 for c = ‖·‖2.

Definition 4.1 (Geodesic convexity for sets). A set S ⊆ Pac
2 (Rd) is called geodesically

convex if for any µ0, µ1 ∈ S, the W2–geodesic µt remains in S.

Definition 4.2 (Geodesic convexity for functions). A function E from Pac
2 (Rd) to R ∪

{+∞} is geodesically convex if and only if for any µ0, µ1 ∈ Pac
2 (Rd),

E(µt) 6 (1− t)E(µ0) + tE(µ1) (4.5)

where (µt) is the W2–geodesic.

Following McCann, a geodesically convex function is often called displacement convex.
A function E is strictly geodesically convex (or strictly displacement convex) if for any
t ∈ (0, 1), the inequality (4.5) is strict unless µ0 = µ1.

Proposition 4.3. The set Pac
2 (Rd) is geodesically convex. More precisely, given µ0 ∈

Pac
2 (Rd) and µ1 ∈ Pac

2 (Rd), one has µt ∈ Pac
2 (Rd) for any t ∈ [0, 1).
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Proof. Let µ0 ∈ Pac
2 (Rd), µ1 ∈ Pac

2 (Rd) and ϕ : Rd → R ∪ {+∞} be a convex Kantorovich
potential so that µt = ((1 − t)id + t∇ϕ)#µ0 is the unique Wasserstein geodesic between
µ0 and µ1. Define Tt = (1− t)id + t∇ϕ. Then, for any x, y ∈ spt(µ0),

〈Tt(x)− Tt(y)|x− y〉 = (1− t) ‖x− y‖2 + t〈∇ϕ(x)−∇ϕ(y)|x− y〉
> (1− t) ‖x− y‖2 ,

where we used the monotonicity of the gradient of convex functions to get the inequality. In
particular, if x 6= y and t < 1, then Tt(x) 6= Tt(y) and the inverse map T−1

t is well-defined.
Moreover, the same inequality shows that T−1

t is Lipschitz with constant L = 1/(1 − t).
In addition, T−1

t transports µt to µ0, i.e. µt(B) = µ0(T−1
t (B)) for any Borel set B.

Thus, if N is Lebesgue-negligible, T−1
t (N) is also negligible (by the next lemma), so that

µt(N) = µ0(T−1
t (N)) = 0. This implies that µt � λ.

Lemma 4.4. If N is Lebesgue-negligible, and if S is Lipschitz, then S(N) is Lebesgue-
negligible.

Proof. By definition, for any ε > 0, there exists (xk, rk)16k6+∞ such thatN ⊆
⋃
k B(xk, rk)

and
∑

k λ(B(xk, rk)) 6 ε. Then, by the Lipschitz property,

T−1
t (N) ⊆

⋃
k

B(T−1
t (xk), Lrk),

so that λ(T−1
t (N)) 6 Ld

∑
k λ(B(xk, rk)) 6 Ldε.

4.1 Displacement convexity of EV ,EW and EF

Theorem 4.5 (McCann). If V,W : Rd → R ∪ {+∞} are convex, then EV and EW are
displacement convex on Pac

2 (Rd). Moreover,

• If V is strictly convex, then so is EV , i.e. for t ∈ (0, 1)

EV (µt) 6 (1− t)EV (µ0) + tEV (µ1),

with equality if and only if µ0 = µ1.

• If W is strictly convex, then EW is “strictly convex up to translations”. More pre-
cisely, for any t ∈ (0, 1),

EW (µt) 6 (1− t)EW (µ0) + tEW (µ1),

with equality if and only if µ1 is a translation of µ0.

Remark 4.6. Under the same assumption, EV and EW are also displacement convex on
P2(Rd). To prove this, one needs to replace the optimal transport map in the definition
of the Wasserstein geodesic by an optimal transport plan (i.e. µt = πt#γ where πt(x, y) =
(1 − t)x + ty, see the previous lesson). Taking µ0 = δx0 and µ1 = δx1 , one obtains that
EV is convex iff V is.
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Remark 4.7. Note that the potential energy is always convex in the classical sense (i.e.
EV ((1 − t)µ0 + tµ1) 6 (1 − t)EV (µ0) + tEV (µ1)), but the interaction energy can be non-
convex. For instance, when W = ‖·‖2,

EW (µ) =

∫ ∫
‖x− y‖2 dµ(x)dµ(y)

= 2

∫
‖x‖2 dµ− 2

∫ ∫
〈x|y〉dµ(x)dµ(y)

= 2

(∫
‖x‖2 dµ−

(∫
xdµ(x)

)2
)
,

which is concave with respect to µ.

Proof. Let µ0, µ1 ∈ Pac
2 (Rd) and µt = ((1 − t)id + tT )#µ0 with T the optimal transport

map between µ0 and µ1. Then

EV (µt) =

∫
Rd

V (x)dµt(x)

=

∫
Rd

V ((1− t)x+ tT (x))dµ0(x)

6 (1− t)
∫
Rd

V (x)dµ0(x) + t

∫
Rd

V (T (x))dµ0(x)

= (1− t)EV (µ0) + tEV (µ1).

Equality holds if all inequalities are equalities. In particular, this implies that for µ0-
almost every x one has V ((1 − t)x + tT (x)) = (1 − t)V (x) + tV (T (x)). If t ∈ (0, 1), this
implies by strict convexity of V , this gives T = id µ0–a.e., so that µ1 = id#µ0 = µ0.

For EW the proof is similar,

EW (µt) =

∫
Rd

W (x− y)dµt(x)dµt(y)

=

∫
Rd

W ((1− t)x+ tT (x)− (1− t)y + tT (y))dµ0(x)dµ0(y)

6
∫
Rd

(1− t)W (x− y) + tW (T (x)− T (y))dµ0(x)dµ0(y)

= (1− t)EW (µ0) + tEW (µ1)

Note that equality holds if and only if all inequalities are equalities. For t ∈ (0, 1) and
using the strict convexity of W , this gives that for µ0 ⊗ µ0-almost every (x, y) one must
have x− y = T (x)− T (y). This implies that x− T (x) = y − T (y) is constant. Hence, T
is a translation.

Theorem 4.8 (McCann). Let F : [0,+∞)→ R ∪ {+∞} be such that

(i) F (0) = 0 and

(ii) r 7→ F (r−d)rd is convex non-increasing.

Then EF is displacement convex on Pac
2 (Rd).
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This theorem is a corollary of the more general result below. Indeed, take µ0 = µ ∈
Pac

2 (Rd), ϕ0 = 1
2 ‖·‖

2 and ϕ1 = ϕ a Kantorovich potential for the optimal transport
problem between µ0 and µ1, i.e. ∇ϕ1#µ0 = µ1. Then,

((1− t)∇ϕ0 + t∇ϕ1)#µ = ((1− t)id + t∇ϕ)#µ0 = µt

is the Wasserstein geodesic between µ0 and µ1.

Theorem 4.9. Let µ ∈ Pac(Rd) and let ϕ0, ϕ1 : Rd → R∪{+∞} be two convex functions
such that spt(µ) ⊆ dom(ϕi). If F : [0,+∞[→ [0,+∞[ is such that

(i) F (0) = 0,

(ii) r 7→ F (r−d)rd is convex non-increasing,

then
t ∈ [0, 1] 7→ EF [((1− t)∇ϕ0 + t∇ϕ1)#µ] .

is convex

We only prove this theorem when the functions ϕ0 and ϕ1 are C2 and uniformly convex.
The proof in the general case can be found in the article of McCann [1] or in Villani’s first
book [2].

Lemma 4.10. Let µ ∈ Pac
2 (Rd) with density ρ, ϕ ∈ C2(Rd) be uniformly convex (that is

∃λ > 0 such that D2ϕ > λid), and F (0) = 0, then

EF (∇ϕ#µ) =

∫
Rd

F

(
ρ(x)

det(D2ϕ(x))

)
det(D2ϕ(x))dx.

Proof. Since D2ϕ > λ, setting xt = (1− t)y + tx, one gets

〈x− y|∇ϕ(x)−∇ϕ(y)〉 = 〈x− y|
∫ 1

0
D2ϕ(xt) · (x− y)〉 > λ ‖x− y‖2 ,

so that T := ∇ϕ is bijective and has Lipschitz inverse. As in Proposition 4.3, this implies
that T#µ is absolutely continuous with respect to the Lebesgue measure. We denote
σ the density of T#µ. Then, by the change of variable formula y = T (x) and using
det(DT (x)) = |det DT (x))|,

EF (∇ϕ#µ) =

∫
F (σ(y))dy =

∫
F (σ(T (x))) det(DT (x))dx. (4.6)

Combining T#µ = σ and the change of variable formula one gets,

∀ϕ ∈ Cb(Rd),
∫
ρ(x)ϕ(x)dx =

∫
σ(y)ϕ(T−1(y))dy

=

∫
σ(T (x)) det(DT (x))ϕ(x)dx

Then, the equality ρ(x) = σ(T (x)) det(DT (x)) holds for a set with full measure in Rd.
Putting this equality into Eq. (4.6), gives the desired formula.

Lemma 4.11. The map M 7→ det(M)1/d is concave over the set of symmetric positive
d-by-d matrices.
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Proof. Recall Hadamard’s formula for a symmetric positive matrix M :

det(M) = min
e1,...,ed

〈e1|Me1〉 · · · 〈ed|Med〉,

where the minimum is taken over orthonormal bases. Given a fixed orthonormal basis
e1, . . . , ed consider f(M) = (〈e1|Me1〉 · · · 〈ed|Med〉)1/d. Then f is concave over the set
of matrices M satisfying 〈ei|Mei〉 > 0 as the composition of the geometric mean (x ∈
(R+)d 7→ (x1 · · ·xd)1/d) with linear functions. Then, det(·)1/d is concave over the set of
symmetric positive matrices, as a minimum of concave functions.

Proof of Theorem 4.9. We prove the theorem only when ϕi are C2 and uniformly convex.
Then, ϕt := (1 − t)ϕ0 + tϕ1 is also C2 and uniformly convex. Hence, by Lemma 4.10,
EF (∇ϕt#µ) =

∫
Rd B(D(x, t))ρ(x)dx, where we have set B(r) = F (r−d)rd and D(x, t) =

(det(D2ϕt(x))/ρ(x))1/d. By Lemma 4.11, for all x ∈ Rd, t ∈ [0, 1] 7→ D(x, t) is concave so
that

D(x, t) > (1− t)D(x, 0) + tD(x, 1).

Hence, since B is non-decreasing and convex,

B(D(x, t)) 6 B((1− t)D(x, 0) + tD(x, 1)) 6 (1− t)B(D(x, 0)) + tB(D(x, 1)).

Integrating this inequality gives the desired convexity result.

Corollary 4.12. The functionals EF generated by the following functions are displacement
convex:

• F (r) = rq for q > 1;

• F (r) = r log r;

• F (r) = −rm for m ∈ [1 − 1/d, 1). (Note that in this case the function is not
superlinear at infinity.)

Proof. Let B(r) = F (r−d)rd. In the three cases, the functions B are given respectively
by B(r) = rd(1−q), B(r) = −d log r and B(r) = −rm(1−d), which are all three convex
non-increasing under the given assumptions.

Corollary 4.13. Given q ∈ (1,+∞] and any constant C > 0, the set{
µ ∈ Pac

2 (Rd) |
∥∥∥∥dµ

dλ

∥∥∥∥
Lq(Rd)

6 C

}

is geodesically convex.

Corollary 4.14 (Brunn-Minkowski inequality). Let K0,K1 be two compact subsets of Rd
and Kt = (1− t)K0 + tK1. Then,

log λ(Kt) > (1− t) log λ(K0) + t log λ(K1).

Proof. If K0 or K1 have zero volume, there is nothing to prove. If not, consider the
probability measures µi = 1

λ(Ki)
λ|Ki

and take F (r) = r log r. Then,

EF (µi) =

∫
Ki

1

λ(Ki)
log

(
1

λ(Ki)

)
dx = − log(λ(Ki)),
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and, setting ρt = dµt/dλ,

EF (µt) =

∫
spt(µt)

F (ρt(x))dx = λ(spt(µt))

(
1

λ(spt(µt))

∫
spt(µt)

F (ρt(x))dx

)

> λ(spt(µt))F

(
1

λ(spt(µt))

∫
spt(µt)

ρt

)
= − log λ(spt(µt))

Since T (K0) ⊆ K1 we have spt(µt) ⊆ ((1 − t)id + tT )(K0) ⊆ Kt. We conclude using the
displacement convexity of EF :

− log λ(Kt) 6 EF (µt) 6 (1− t)EF (µ0) + tEF (µ1)

= − [(1− t) log λ(K0) + t log λ(K1)]

Exercise 4.15. Prove the Brunn-Minkowski inequality in the case λ(K0) = λ(K1) = 1
using Corollary 4.13 with q = +∞

4.2 On interacting gas and ground state

An important application (which actually was the initial motivation in [1]) of all the theory
we have developed so far consists in establishing the existence of stationary configurations,
particularly optimisers, and their properties of interacting gas models.
Consider a d− dimensional gas of particles. The state of the gas is represented by it mass
density ρ ∈ Pac(Rd). An attraction between the particles with increases with distance
is represented by a strictly convex interaction potential W . Resistance of the gas to the
compression is modelled by an equation of state in which the pressure depends on the
local density only. Notice that the thermodynamical pressure is given by

P (ρ) = ρF ′(ρ)− F (ρ).

The question is then: is it possible for these two forces to balance each other and if they
do, must the system be in a uniquely determined, stable equilibrium state?
This problem can formulated in a variational formulation which turns out to be

min
µ∈P(Rd)

EV (µ) + EW (µ) + EF (µ), (4.7)

notice that one can also add the effect of an electrostatic potential V . In the original paper
by McCann V is taken to be 0. When F (r) = rq and q = 5/3 in d = 3, the internal energy
is the semi-classical approximation of the quantum kinetic energy of a gas of fermions.
Then the following theorem holds

Theorem 4.16. Consider the following functional

min
µ∈P(Rd)

EV (µ) + EW (µ) + EF (µ).

Assume that V and W are l.s.c and strictly convex. Let F be l.s.c. and such that the
hypothesis of 4.8 are satisfied. Then, there exists at most one minimiser on the set of
absolutely continuous probability measures on Rd.

Remark 4.17. We want to give some additional remarks in order to understand the
physical meaning of hypothesis (ii) in 4.8.
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• Consider a uniform cloud of d−dimensional gas with mass M in a volume V , so
that the density is constant and equal to M/V . Assume that the gas expands: its
dimensions are multiplied by a factor λ, so its volume is multiplied by λd and its
density divided by λd. The internal energy, as a function of the dilation factor λ, is
then V λdF (λ−dM/V ), which is proportional to rdF (r−d). Condition (ii) means that
the internal energy is a convex non-increasing function of this dilation factor. Note
that physical realism requires at least that the internal energy be a non-increasing
function.

• The first derivative of r 7→ rdF (r−d) is −drd−1P (r−d) so the non-increasing property
is equivalent to the non-negativity of the pressure which makes physical sense. By
computing the second derivative of r 7→ rdF (r−d) and knowing that P (0) = 0, one
easily sees that P should be non-decreasing and moreover since P ′(ρ) = ρF ′′(ρ), it
follows that F must be convex.
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