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Plan for today lecture

1. Density Functional Theory: from
the gquantum to the classical

2. Counter-example to the
convexity conjecture

Lot of calculus of variations
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l. Density Functional Theory:
from the quantum to the classical




Schrodinger’s equation for electrons in a molecule

» M point nuclei of charges z;,...,2y € Nplaced atR,..., Ry, €| )

M

z: <m
Vi = - lx — R, |
— 1 m

. N electrons: antisymmetric wave function y/(x,, . .., x,) on (l )V with [ | =1
HY(Vyy = Ey, HY(V):=— —AR3N+ Z' V(x)+ Z' ‘
| x; — X
j<k 'Y k

Problem: essentially impossible to solve nhumerically!



A variational principle and a double minimisation (Levy ’82, Lieb ’83)

o o ) B N ]
EIN, V] =inf(y, H*(V)y), HY(V):=——-A Z V(x) 2 }
| v 2 j=1 j<k ‘xj X

Density of pure states

(y, HY(V)y) = (w, HY(O)y) + J P, ()V(x)dx
R3

Py(X) = NJ [P (x, X5, . .., x0) |ZdXy-dxy

R3(N-1)

Pure states

E[N, V] = inf(y, HY(V)y) = inf { inf (y, HY(O)y) J p(x)V(x)dx}
R3

W p wlp,=p




Some remarks

New unknown p depends on only one variable x & R’ = no N-Particle space anymore!

Easy to show existence of F;;

F;; = “universal Levy-Lieb functional” , very nonlinear and non local, impossible to compute in
practice and no-explicit formulation in terms of p

It IS ot convex @

Density Functional Theory (DFT):

Understand better the true £ ;;

Replace it with F,, and then E[N, V] ~ inf {Fapp[p] + [pV}.
p



Let’s try again: Legendre duality (Lieb ‘83)

E[N, V] = inf(y. HN(V)l//) HN(V) = — A +() - Z : - 71
’ v ’ ' p) . ! | x; — x| |

- p— - — == ———— — p—— e

Legendre transform and duality
V- E[N, V]is concave hence we can write

EIN,V] = 1nf {F[p] + J p(x)V(x)dx},
R3

p

where F|p] is convex w-Isc functional defined by

Flp] = sup {E[N, V] = J p(X)V(X)dX},
R3

vV

with p : R? — R “variable dual to V”
AT R R

Good news: F'is convex!!

Bad news: Who is F?!1?!



Who is p? Who is F[p]?

Density of mixed states

J

tr(HY(V)IN) = tr(HY(0)) + J

R3

J

p(x)V(x)dx

pr= ) npy, T'=) n|¥N¥Y

Rmk: (V,T) — tr(HY(V)I') is linear both in Vand I’

Mixed states: a double minimisation approach

E[N, V] = infte(HY(V)D) =i
I

nf

inf tr(HY(0)) -

Ilpr=p

In J p(x)V(x)dx}
R3




The universal functional F|p]
Theorem (Lieb ’83)

The universal functional | p|, satisfying the previous Legendre duality relations, is

Flp] := inf tr(HY(0O))
Pr=>p

It is finite if and only if \/,5 e H(R").

Inf-sup argument

Flp] = sup {E[N, V] - JpV} = sup inf {tr(HN(V)F) — JpV}

1% v I

= inf sup {tr(HN (O + J(pr — p)V)} = inf {tr(HN (0)I) + sup J(pr — p)V}

r vy r Vv

= + oo UNIesSs pr = p



Low and high density regimes (aka some | —cv results)

g ——
dl xl,...,xN }‘

Inf

_ - '»‘
- PSY m’ip_p RV 1< j<k<N__ Jk

5
=
]

e FlA”p(Ax)] _ Iy 4

|

Rmk:
« Convergence to T|p] rather easy (Lewin-Lieb-Seiringer '22)

« Convergence to C|p] much more complicated due to the lack of regularity of classical problem (Cotar-Friesecke-Klippelberg '13-'18,

Bindini-De Pascale 18, Lewin ’18)



The low-density limit is (very) singular

Pair density forA =1, A =0.1and 4 ~ 0in 1D, with N = 4 and

2
p(x) = g(l + coS(7x/5)) ¥ ve—5.51(X)
(Chen-Friesecke '15)



Some remarks

« Existence for I;;[p] and F|p]: it follows by using the direct method fo calculus of variations. Notice that the mass constraint

(e.g. Jh//\z = 1) helps to get some compactness.

« p = F;;[p]isnonconvex so the Legendre duality fails.

 Relation between f;; and F-

J J J

~ 0.2}

——exact

F is actually the convex hull of £ ;. 0.4 \ o SCE|
\
|

| totally ignored the 3 hours speech on the functional spaces but

bond energy (a.u.)
o
\d
\\
\ 3
\\ |
|

p E { Jp =N,\/p € Hl([R3)} and V € L¥*(R?) + L®(R?) (Lieb ’83).

« (lp]is a (multi-marginal) optimal transport problem. 0 1 2 o 5 6

H, dissociation Chen-Friesecke-Mend| ‘14

« In computational chemistry Flp| =~ T|p] + C|p]



ll. A convexity conjecture In
Quantum Chemistry




Experimental energies of an atom with Z protons, in terms of the number
N of electrons:
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Carbon Z =6 Oxygen Z = 8 Zinc Z = 30

Data from Wikipedia, NIST
Rmk #1: monotone (additional electron stays if energy decreases, or escapes to infinity)

Rmk #2: convex (valence electrons less tightly bound than core electrons)

Rmk #3: constant for N > Z + lor Z + 2 (nucleus cannot bind too many electrons)

& Electrons described by Schrodinger’s equation!

*#1 easy to prove
 #2, #3 very hard to prove = “ionisation conjecture”




lonization conjecture #2

Conjecture (convexity-in-/V)

For V€ 7, the map N — E[N, V] is convex, which means (with E[0,V] = 0)

EIN,V]I-EIN-1,V] L EIN+ 1LV]=E[N,V], VNe&N

o Perdew-Parr-Levy-Balduz (1982) and Parr-Yang (1994) E°(N +1) - E°(N)=E°(N) - E°(N - 1) (4.1.14)
M or
Z =
suggest conjecture true for all V(x) = — Z ~— 7z, €N I(N+1)=I(N) (4.1.15)
m=1 |x _ ml where I(N) is the ionization potential of the N-electron ground state.

Equation (4.1.15) states that successive ionization potentials are not
decreasing (for fixed external potential).

For atoms and molecules, no counterexample is known to (4.1.15),
although a first-principles proof has never been given. As examples, in

O Lieb (1983) stated the conjecture for all V'

While it has been conjectured that E(N, v) is convex in N (for all v) in the case
of Coulomb repulsion, this has never been proved. It has not even been proved
that E(3,v)+ E(1,v)=2E(2, v).

Problem 10A ( Monotonicity of the lonization Energy). Prove that

o Simon (1984) Included the conjecture for atoms in a famous list of (AEY(N—1,Z)2(AE) (N, Z)

15 open problems for all N, Z.

This is just the fact, almost obvious, that it takes more energy to remove
inner electrons than outer ones. Since in removing electron (N — 1) there is one
fewer electron to repel, and since the Pauli principle only makes things better this
should be true. It seems to be remarkably difficult to prove.



A counter-example with nuclel of fractional charges

Theorem

There exists R, ..., R; € IR3,ZI, ...,Z>0,and ¢, < e, < ¢; < 0 such that, for

_361_ A A " . i . A N A 1 A A . A . A A S S S U S S S S——

6 I\ €
VAx) = — Z wlV O

‘ X— A ‘ Rm -3.63

m=1

-3.64

We have forall N > 5

-3.65

_ el —1 . _ 62 | —1 — — 64 | —1
E[1,V,] = — +o(C7), E[2,V,] = E[3,V,] = > o(™"), EIN,V,] = E[4,V,] = > o(™"),

and hence convexity fails at N = 3 for £ > 1.

* First counter-example for Coulomb, still open for real nuclear (integer charges)

* Follows from calculus of variations arguments for classical electrons



Back to classical N—body problem

Classical minimal energy

e[V, V] = 1Ilf (2 V(X)-l‘ 2 ﬁ)
7k

""" 1<j<k<N

Conjecture (convexity-in-/N)

For V€ 7, the map N — ¢|[N, V] is convex

Quantum conjecture for all nice-enough V = classical one since

lim EIN. eVl _ oy v
£— E



Classical counter-example

| N EY[V]~ minimizer
V= 4 tx=R, 1 -2.1665 R:
+o00 Ifx&{R,...,R:} 2 -3.6187 Ri, R>
3 -3.6129 R4, Rs, Re
v = v, = — 2.1665 4 -3.6450 Rs,...,Rs
5 -2.3949 R>.....Ré
=v, =—1.4109 )
BT 6 -0.4304 Ry,...,Rs
vs =V = — 1.9934
340 "il
—3.45; . . . . . <>R6
-3.50| . 1 o "-._C 1
_3 55| R4 R, 0.7 "..Rg
-' el
~3.60 | Rs

~3.65.



Variational formulation for the convex hull of N — e(N . V)

e(N,V) =infE,, = inf J EydP, Ey(x),...,xy) = ZV(x)+ Z
R3N

psSymm 1<j<k<N | % — xk‘

Grand-canonical: make N random

e V) = mf{zpne(n 1) pa=1, ann—/l}

n>1

Thatis, A € R, = e;-(4, V) is the convex hull of N = e(N, V)

Example: for previous counter-example V, better to have 2 and 4 particles each with proba 1/2 instead of 3.

Conjecture true forone VandallN > 1 < e ;(N,V)=e{V,V), VN > 1




Legendre transforms (and duality)
Let’s look at the Legendre transforms of e[ N, V] and e[V, V]!

Multi-marginal optimal transport with Coulomb cost

. dP(x,, ..., Xn)
Clp] = inf J 1 al
P sym, pp=p R3N1§jSkSN ‘xj T xk‘

then

Clp] = sup {e[N, V] - JpV}, e[N,V] = inf {C[p] + JpV}

vV

Grand-canonical optimal transport with Coulomb cost

Coclp] =inf{ anC[pn] | an= L, anpfp}

n>1 n

Conjecture true forall Vand all N > 1 < Cglp]l = Clpl, Vp with Jp =N



?
Support for the grand canonical aka Clp| = C-[p]
Forp = (p,),>0 We call supp(p) = {n | p,, # 0} its support in n

Theorem (support in 1)
Let p > 0 with N = p(R?) € N and Coclp] £ Clp] < + o0. Any optimiser for C; [ p] satisfies

= {N} if N € {0,1,2}, hence C.-[p] = Clp]
supp(p)

1 3 1 1 :
CIN=3V8N+9+,N+_/8N—-T7—-] ifN>3

Theorem (counter-example)
There exists a p with p(R>) = 3 such that supp(p) = {2,4}, hence Ceclp]l < Clp]. Moreover, for every k > 1,

6k 6k - 2k 6k 2k
There exists p(k) with p(k)([R3) = 7 such that supp(p(k)) = { )

= convexity in /N conjecture cannot hold!



- For the 6 points Ry, . . ., R below-right we have

1 6
< (C|— o ~ 3.9157
) Z'l Rm]

1 6
3.8778 ~ Cp( [5 D o
m=1

With the optimiser
1

7O

2

* Repeating this pattern at different scales we found

\. =_(5R1®5Rz+5R3®”’®5R6) 1

el
e

6" — 28 6+ 2
supp(p™) = { }

2 2

—-10 A

—-20 -




Finding the potential V

» To find the potential V, we first solve the dual problem to C~ bu we get
8[2,VGc] — 6[3’VGC] — 6[4’VGC] @

e Idea: minimize V i (e[2,V] + ¢e|4,V])/2 — e[3,V] in a neighbourhood of
Vootoget V. @

difference as a function of (| v |, |v5]|)



Conclusion

» convexity-in-N conjecture wrong for general Coulomb potentials
 still open for atoms and molecules

e experiments and numerics say it is true for atoms, but no (mathematical)
Intuition why

* very helpful to work with tools from calculus of variations (Legendre transform)

o Schrodinger equations is 100 years old in 2025 but still poses many interesting
mathematical questions with large impact in applications



Not yet the end (Exam on 17/01/2025 room 0A7)

» Existence: use the direct method of calculus of variations so look for (1)
compactness and (2) lower semi-continuity.

» Unigueness follows from strict convexity of the functional.

» Euler-Lagrange equations hold usually in the sense of distributions: prove that
they hols in a stringer sense demands some additional work (remember the one
dimensional case).

» Legendre transform and duality can help to understand better the problem, that
Is the properties of the minimiser (regularity).

-Variational convergence, aka I —convergence, helps to understand better a
problem if we approximate it with a suitable optimization problem.

Happy 2025! And good luck (especially if you go for a Ph.D. whatever the topic)!



