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1. Density Functional Theory: from 
the quantum to the classical


2. Counter-example to the 
convexity conjecture

Plan for today lecture

Some references: 
• E.H. Lieb, Density functionals for Coulomb Systems, International Journal of Quantum Chemistry, XXIV, 243-277, 1983. 
• M. Lewin, E.H. Lieb, R. Seiringer. Universal functionals in Density Functional Theory. Chapter 3 in Density Functional Theory — 

Modeling, Mathematical Analysis, Computational Methods, and Applications, edited by Eric Cances and Gero Friesecke, Springer, 
2023.

• M. Lewin Coulomb and Riesz gases: The known and the unknown. J. Math. Phys., 63, p. 061101, 2022.

Lot of calculus of variations



I. Density Functional Theory: 
from the quantum to the classical



Schrödinger’s equation for electrons in a molecule

• M point nuclei of charges  placed at   z1, . . . , zM ∈ ℕ R1, . . . , RM ∈ ℝ3

V(x) = −
M

∑
m=1

zm

|x − Rm |

• N electrons: antisymmetric wave function  on  with ψ(x1, . . . , xN) (ℝ3)N ∫ℝ3N

|ψ |2 = 1

HN(V)ψ = Eψ, HN(V) := −
1
2

Δℝ3N +
N

∑
j=1

V(xj)+∑
j<k

1
|xj − xk |

Problem: essentially impossible to solve numerically!



A variational principle and a double minimisation (Levy ’82, Lieb ’83)

 

Where the minimisation is performed on all the antisymmetric wavefunctions in  with with mass 1.

E[N, V] = inf
ψ

⟨ψ, HN(V)ψ⟩, HN(V) := −
1
2

Δ +
N

∑
j=1

V(xj) + ∑
j<k

1
|xj − xk |

H1(ℝ3)

Density of pure states 

                                                         ⟨ψ, HN(V)ψ⟩ = ⟨ψ, HN(0)ψ⟩ + ∫ℝ3

ρψ(x)V(x)dx

ρΨ(x) = N∫ℝ3(N−1)

|Ψ(x, x2, . . . , xN) |2 dx2⋯dxN

Pure states 

                                       E[N, V] = inf
ψ

⟨ψ, HN(V)ψ⟩ = inf
ρ { inf

ψ|ρψ=ρ
⟨ψ, HN(0)ψ⟩ + ∫ℝ3

ρ(x)V(x)dx}

FLL[ρ] Levy-Lieb functional 



Some remarks
• New unknown  depends on only one variable      no N-Particle space anymore!  


• Easy to show existence of   


•  “universal Levy-Lieb functional” , very nonlinear and non local, impossible to compute in 
practice and no-explicit formulation in terms of 


• It is not convex 😭


• Density Functional Theory (DFT): 

• Understand better the true ;


• Replace it with  and then .

ρ x ∈ ℝ3 ⇒

FLL

FLL =
ρ

FLL

Fapp E[N, V] ≈ inf
ρ {Fapp[ρ] + ∫ ρV}



Let’s try again: Legendre duality (Lieb ‘83)
E[N, V] = inf

ψ
⟨ψ, HN(V)ψ⟩, HN(V) := −

1
2

Δ +
N

∑
j=1

V(xj) + ∑
j<k

1
|xj − xk |

Legendre transform and duality 
 is  concave hence we can write 

                                  

where  is convex w-lsc functional defined by  

   

with  “variable dual to ” 

V ↦ E[N, V]

E[N, V] = inf
ρ {F[ρ] + ∫ℝ3

ρ(x)V(x)dx},

F[ρ]

F[ρ] = sup
V {E[N, V] − ∫ℝ3

ρ(x)V(x)dx},

ρ : ℝ3 → ℝ V

Good news:  is convex!! 


Bad news: Who is ?!?!

F

F



Who is ? Who is ?ρ F[ρ]
Density of mixed states 

                                                         tr(HN(V)Γ) = tr(HN(0)Γ) + ∫ℝ3

ρ(x)V(x)dx

ρΓ = ∑
j

njρΨj
, Γ = ∑

j

nj |Ψj⟩⟨Ψj |

Rmk:  is linear both in  and (V, Γ) ↦ tr(HN(V)Γ) V Γ

Mixed states: a double minimisation approach  

    E[N, V] = inf
Γ

tr(HN(V)Γ) = inf
ρ { inf

Γ|ρΓ=ρ
tr(HN(0)Γ) + ∫ℝ3

ρ(x)V(x)dx}
F[ρ] Lieb functional 



The universal functional F[ρ]
Theorem (Lieb ’83) 

The universal functional , satisfying the previous Legendre duality relations, is


                  


It is finite if and only if .

F[ρ]

F[ρ] := inf
ρΓ=ρ

tr(HN(0)Γ)

ρ ∈ H1(ℝ3)

Inf-sup argument 

                            

                                    

F[ρ] = sup
V {E[N, V] − ∫ ρV} = sup

V
inf
Γ {tr(HN(V)Γ) − ∫ ρV}

= inf
Γ

sup
V {tr(HN(0)Γ) + ∫ (ρΓ − ρ)V)} = inf

Γ {tr(HN(0)Γ) + sup
V ∫ (ρΓ − ρ)V}

= + ∞ unless ρΓ = ρ



Low and high density regimes (aka some cv results)Γ−
Two new functionals


T[ρ] = inf
ρΓ=ρ

tr( Δℝ3N

2
Γ) C[ρ] = inf

ℙ sym, ρℙ=ρ ∫ℝ3N
∑

1≤ j≤k≤N

dℙ(x1, . . . , xN)
|xj − xk |

Theorem 

lim
λ→∞

F[λ3ρ(λx)]
λ2

= T[ρ] lim
λ→0

F[λ3ρ(λx)]
λ

= C[ρ]

Rmk: 

• Convergence to  rather easy (Lewin-Lieb-Seiringer ’22)


• Convergence to  much more complicated due to the lack of regularity of classical problem (Cotar-Friesecke-Klüppelberg ’13-’18,


    Bindini-De Pascale ’18, Lewin ’18)

T[ρ]

C[ρ]



The low-density limit is (very) singular

Pair density for  and  in 1D, with  and


 


(Chen-Friesecke ’15)

λ = 1, λ = 0.1 λ ≈ 0 N = 4
ρ(x) =

2
5

(1 + cos(πx /5))χx∈[−5,5](x)



Some remarks
• Existence for  and : it follows by using the direct method fo calculus of variations. Notice that the mass constraint         

(e.g.  ) helps to get some compactness.


•  is non convex so the Legendre duality fails.


• Relation between  and :


    is actually the convex hull of .


• I totally ignored the 3 hours speech on the functional spaces but 


 and  (Lieb ’83).


•  is a (multi-marginal) optimal transport problem.


• In computational chemistry 

FLL[ρ] F[ρ]

∫ |ψ |2 = 1

ρ ↦ FLL[ρ]

FLL F

F FLL

ρ ∈ {∫ ρ = N, ρ ∈ H1(ℝ3)} V ∈ L3/2(ℝ3) + L∞(ℝ3)

C[ρ]

F[ρ] ≈ T[ρ] + C[ρ]

F[ρ] = inf ∑
j

njFLL[ρj] | ∑
j

njρj = ρ, ∑
j

nj = 1, nj ≥ 0

 dissociation Chen-Friesecke-Mendl ‘14H2



II. A convexity conjecture in 
Quantum Chemistry 



Experimental energies of an atom with  protons, in terms of the number 
 of electrons:

Z
N

Data from Wikipedia, NIST

Rmk #1: monotone (additional electron stays if energy decreases, or escapes to infinity)

Rmk #2: convex (valence electrons less tightly bound than core electrons)

Rmk #3: constant for or  (nucleus cannot bind too many electrons)N ≥ Z + 1 Z + 2

Electrons described by Schrödinger’s equation!
•#1 easy to prove

•  #2, #3 very hard to prove  “ionisation conjecture”⇒



Ionization conjecture #2
Conjecture (convexity-in- ) 

For , the map  is convex, which means (with )


N

V ∈ ? N ↦ E[N, V] E[0,V] = 0

E[N, V] − E[N − 1,V] ≤ E[N + 1,V] − E[N, V], ∀N ∈ ℕ

Perdew-Parr-Levy-Balduz (1982) and Parr-Yang (1994)


 suggest conjecture true for all V(x) = −
M

∑
m=1

zm

|x − Rm |
, zm ∈ ℕ

Lieb (1983) stated the conjecture for all V

Simon (1984) Included the conjecture for atoms in a famous list of 
15 open problems 



A counter-example with nuclei of fractional charges
Theorem 

There exists  and  such that, for





We have for all 





and hence convexity fails at  for .

R1, . . . , R6 ∈ ℝ3, z1, . . . , z6 > 0, e4 < e2 < e1 < 0

Vℓ(x) = −
6

∑
m=1

zm/ ℓ
|x−ℓ |Rm

N ≥ 5

E[1,Vℓ] =
e1

ℓ
+ o(ℓ−1), E[2,Vℓ] = E[3,Vℓ] =

e2

ℓ
+ o(ℓ−1), E[N, Vℓ] = E[4,Vℓ] =

e4

ℓ
+ o(ℓ−1),

N = 3 ℓ ≫ 1

• First counter-example for Coulomb, still open for real nuclear (integer charges)


• Follows from calculus of variations arguments for classical electrons



Back to classical body problemN−
Classical minimal energy 

e[N, V] = inf
x1,...,xN

(
N

∑
j=1

V(xj)+ ∑
1≤j≤k≤N

1
|xj − xk | )

Conjecture (convexity-in- ) 

For , the map  is convex

N

V ∈ ? N ↦ e[N, V]

Quantum conjecture for all nice-enough classical one since
V ⇒

lim
ε→0

E[N, εV(ε⋅)]
ε

= e[N, V]



•Classical counter-example

V(x) = {vm if x = Rm

+∞ if x ∉ {R1, . . . , R6}

v1 = v2 = − 2.1665
v3 = v4 = − 1.4109
v5 = v6 = − 1.9934



Variational formulation for the convex hull of N ↦ e(N, V)

e(N, V) = inf EV
N = inf

ℙ symm ∫ℝ3N

EV
N dℙ, EV

N(x1, . . . , xN) =
N

∑
j=1

V(xj)+ ∑
1≤ j≤k≤N

1
|xj − xk |

Grand-canonical: make  random 




That is,  is the convex hull of 

N

eGC(λ, V) = inf ∑
n≥1

pne(n, V) | ∑ pn = 1, ∑
n

npn = λ

λ ∈ ℝ+ ↦ eGC(λ, V) N ↦ e(N, V)

Example: for previous counter-example , better to have 2 and 4 particles each with proba 1/2 instead of 3.V

Conjecture true for one  and all    V N ≥ 1 ⟺ eGC(N, V) = e(N, V), ∀N ≥ 1



Legendre transforms (and duality)
Let’s look at the Legendre transforms of  and ! e[N, V] eGC[N, V]
Multi-marginal optimal transport with Coulomb cost 

 

then 

 

C[ρ] = inf
ℙ sym, ρℙ=ρ ∫ℝ3N

∑
1≤ j≤k≤N

dℙ(x1, . . . , xN)
|xj − xk |

C[ρ] = sup
V {e[N, V] − ∫ ρV}, e[N, V] = inf

∫ ρ=N {C[ρ] + ∫ ρV}
Grand-canonical optimal transport with Coulomb cost 

 CGC[ρ] = inf ∑
n≥1

pnC[ρn] | ∑ pn = 1, ∑
n

pnρn = ρ

Conjecture true for all  and all    with  V N ≥ 1 ⟺ CGC[ρ] = C[ρ], ∀ρ ∫ ρ = N



Support for the grand canonical aka C[ρ] = CGC[ρ]
?

For  we call  its support in  p = (pn)n≥0 supp(p) = {n | pn ≠ 0} n
Theorem (support in ) 
Let  with  and . Any optimiser for  satisfies 

 

n
ρ ≥ 0 N = ρ(ℝ3) ∈ ℕ CGC[ρ] ≤ C[ρ] < + ∞ CGC[ρ]

supp(p){
= {N} if N ∈ {0,1,2}, hence CGC[ρ] = C[ρ]

⊂ [N − 1
2 8N + 9 + 3

2 , N + 1
2 8N − 7 − 1

2 ] if N ≥ 3

Theorem (counter-example) 
There exists a  with  such that , hence . Moreover, for every , 

There exists  with  such that  

ρ ρ(ℝ3) = 3 supp(p) = {2,4} CGC[ρ] < C[ρ] k ≥ 1

ρ(k) ρ(k)(ℝ3) =
6k

2
supp(p(k)) = { 6k − 2k

2
,

6k + 2k

2 }

 convexity in  conjecture cannot hold!⇒ N



• For the 6 points  below-right we have





With the optimiser 

R1, . . . , R6

3.8778 ≈ CGC[ 1
2

6

∑
m=1

δRm] < C[ 1
2

6

∑
m=1

δRm] ≈ 3.9157

ℙ =
1
2 (δR1

⊗ δR2
+ δR3

⊗ . . . ⊗ δR6)
• Repeating this pattern at different scales we found


supp(p(k)) = { 6k − 2k

2
,

6k + 2k

2 }



Finding the potential V
• To find the potential , we first solve the dual problem to  bu we get


 😭


• Idea: minimize  in a neighbourhood of 
 to get .  😊

V CGC

e[2,VGC] = e[3,VGC] = e[4,VGC]

V ↦ (e[2,V] + e[4,V])/2 − e[3,V]
VGC V

difference as a function of ( |v1 | , |v3 | )



• convexity-in-N conjecture wrong for general Coulomb potentials

Conclusion
• still open for atoms and molecules

• experiments and numerics say it is true for atoms, but no (mathematical) 
intuition why

• very helpful to work with tools from calculus of variations (Legendre transform)

• Schrödinger equations is 100 years old in 2025 but still poses many interesting 
mathematical questions with large impact in applications



Not yet the end (Exam on 17/01/2025 room 0A7)
• Existence: use the direct method of calculus of variations so look for (1) 
compactness and (2) lower semi-continuity.


• Uniqueness follows from strict convexity of the functional.


• Euler-Lagrange equations hold usually in the sense of distributions: prove that 
they hols in a stringer sense demands some additional work (remember the one 
dimensional case).


• Legendre transform and duality can help to understand better the problem, that 
is the properties of the minimiser (regularity).


•Variational convergence, aka convergence, helps to understand better a 
problem if we approximate it with a suitable optimization problem.

Γ−

Happy 2025! And good luck (especially if you go for a Ph.D. whatever the topic😉)! 


