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1 Examples of Existence and Non-Existence
We will see in this section how to prove the existence for a very standard example of
variational problem, the technique being useful to understand how to attack more
general problems. We will consider a functional involving first derivatives of the
unknown u, but the existence of the minimizers will not be proven in the space
C1. We will instead set the problem in a Sobolev space, since Sobolev spaces have
better compactness properties and their norm is more adapted to study variational
problems.

1



1.1 1D examples

Let us firstly by introducing some examples in one dimension.

The geodesic problem Given two points in a given space X we want to find the
minimal-length connecting them. The length of a curve ω : [0, 1] → Rd is defined
as

ℓ(ω) := sup

{
n−1∑
i=0

|ω(tk)− ω(tk−1)| | n ⩾ 1, 0 = t0 = · · · = tn = 1

}
.

Notice that of ω ∈ C1 then we have that

ℓ(ω) =

∫ 1

0

|ω̇(t)| dt.

So given two points x0 and x1, the geodesic problem takes the following form

inf{ℓ(ω) | ω ∈ AC([0, 1];X), ω(0) = x0, ω(1) = x1},

where AC([0, 1];X) stands for absolutely continuous curves defined on [0, 1] and
valued in X.

The Ramsey model for the optimal groth of an economic activity In
this model we describe the financial situation of an economic activity (say, a small
firm owned by an individual) by a unique number representing its capital, and
aggregating all relevant information such as money in the bank account, equipment,
properties, workers,etc. This number can evolve in time and will be denoted by k(t).
The evolution of k depends on how much the firm produces and how much the owner
decides to "consume". We denote by f(k) the production when the capital level is
k, and we usually assume that f is increasing and often concave. We also assume
that capital depreciates at a fixed rate δ > 0 and we call c(t) the consumption at
time t. We then have k′(t) = f(k(t)) − δk(t) − c(t). The goal of the owner is to
optimize the consumption bearing in mind that reducing the consumption for some
time allows the capital to be kept high, letting it grow even further, to finally be
consumed later. More precisely, the owner has a utility function U : R → R, also
increasing and concave, and a discount rate r > 0, and his goal is o optimize∫ T

0

e−rtU(c(t)) dt,

where T is fixed time horizon. One can take T = ∞ or T < ∞ and possibly add a
final pay-off ψ(k(T )). The maximization problem can be considered a maximization
over c, and k(T ) can be deduced from c, or everything can expressed in terms of
k. Positivity constraints are also reasonably added on c and on k. The problem
becomes a classical calculus of variations problems of the form

sup

{∫ T

0

e−rtU(f(k)− δk − k′) dt+ ψ(k(T )) | k(0) = k0, k ⩾ 0, c = f(k)− δk − k′ ⩾ 0

}
.
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1.2 Existence of Minimizers

We consider an interval I = [a, b] ⊂ R and a continuous function F : I × R → R
that we assume bounded from below.

Theorem 1.1. Let us consider the problem:

inf
{
E(u) | u ∈ H1(I), u(a) = A, u(b) = B

}
.

where

E(u) :=

∫ b

a

(
F (x, u(x)) + |u′(x)|2

)
dx

This minimization problem admits a solution.

Proof. Take a minimizing sequence {un} such that E(un) → inf E. The functional
E is composed of two terms (the one with F and the one with |u′|2), and their sum
is bounded from above. Since they are both bounded from below, we can deduce
that they are also both bounded from above. In particular, we obtain an upper
bound for ∥u′n∥L2 . Since the boundary values of un are fixed, applying the Poincaré
inequality of Lemma 1.3 to the functions x 7→ un(x)− B−A

b−a (x− a)− A, we obtain
a bound on ∥un∥H1 (i.e., the L2 norms of un and not only of u′n are bounded).

Hence, (un)n is a bounded sequence in H1, and we can extract a subsequence
which weakly converges in H1 to a function u. In dimension one, the weak con-
vergence in H1 implies the uniform convergence, and in particular, the pointwise
convergence on the boundary. We then deduce from un(a) = A and un(b) = B that
we have u(a) = A and u(b) = B, i.e., that u is an admissible competitor for our
variational problem. We just need to show E(u) ⩽ lim inf E(un) = inf E in order to
deduce E(u) = inf E and the optimality of u. In this case, the uniform convergence
un → u implies: ∫ b

a

F (x, un(x)) dx→
∫ b

a

F (x, u(x)) dx,

and proves the continuity of the first integral term.
We now observe that the map H1 ∋ u 7→ u′ ∈ L2 is continuous, and hence the

weak convergence of un to u in H1 implies u′n ⇀ u′ in L2. An important property of
the weak convergence in any Banach space is the fact that the norm itself is lower
semicontinuous, so that:

∥u′∥L2 ⩽ lim inf ∥u′n∥L2 ,

and hence: ∫ b

a

|u′(x)|2 dx ⩽ lim inf

∫ b

a

|u′n(x)|2 dx.

This concludes the proof.

Remark 1.2 (The direct method of calculus of variations). The strategy we have
just seen is very general and typical in the calculus of variations. It is called the
direct method and requires a topology (or a notion of convergence) to be found on
the set of admissible competitors such that:
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• There is compactness (any minimizing sequence admits a convergent subse-
quence, or at least a properly built minimizing sequence does so).

• The functional that we are minimizing is lower semicontinuous, i.e., E(u) ⩽
lim inf E(un) whenever un → u.

1.3 Non-Existence

We consider in this section a very classical example of a variational problem in 1D
which has no solution. With this aim, let us consider:

inf
{
E(u) | u ∈ H1

0 ([0, 1])
}
,

where

E(u) :=

∫ 1

0

(∣∣|u′(x)|2 − 1
∣∣+ |u(x)|2

)
dx.

It is clear that for any admissible u, we have E(u) > 0: indeed, E is composed of
two non-negative terms, and they cannot both vanish for the same function u. In
order to have

∫ 1

0
|u(x)|2 dx = 0, one would need u = 0 constantly, but in this case,

we would have u′ = 0 and E(u) = 1. On the other hand, we will prove inf E = 0,
which shows that the minimum cannot be attained.

To do so, we consider the following sequence of Lipschitz functions un: we first
define U : [0, 1] → R as:

U(x) =
1

2
− |x− 1

2
|.

It satisfies U(0) = U(1) = 0, |U | ⩽ 1
2
, and |U ′| = 1 a.e. ( U is Lipschitz continuous

but not C1). We then extend U as a 1-periodic function on R, that we call Ũ , and
then set un(x) = 1

n
Ũ(nt). The function un is 1

n
-periodic, satisfies un(0) = un(1) = 0

again, and |u′n| = 1 a.e. We also have |un| ⩽ 1
2n

. If we compute E(un), we easily see
that:

E(un) ⩽
1

4n2
→ 0,

which shows inf E = 0. The above example is very useful to understand the relation
between compactness and semicontinuity. Indeed, the sequence un which we built
is such that un converges uniformly to 0, and u′n is bounded in L∞. This means
that we also have u′n

∗
⇀ 0 in L∞ (indeed, a sequence which is bounded in L∞ admits

a weakly-* convergent subsequence and the limit in the sense of distributions of u′n
can only be the derivative of the limit of un, i.e., 0). This means that, if we use weak
convergence in Sobolev spaces (weak convergence in L∞ implies weak convergence
in L2, for instance), then we have compactness. Yet, the limit is the function u = 0,
but we have E(u) = 1 while limE(un) = 0, which means that semicontinuity fails.
This is due to the lack of convexity of the double-well function W (p) =

∣∣|p|2 − 1
∣∣

: indeed, the 0 derivative of the limit function u is approximated through weak
convergence as a limit of a rapidly oscillating sequence of functions u′n taking values
±1, and the values of W at ±1 are better than the value at 0 (which would not have
been the case if W was convex). On the other hand, it would have been possible
to choose a stronger notion of convergence, for instance, strong H1 convergence. In
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this case, if we have un → u in H1, we deduce u′n → u′ in L2, and E(un) → E(u).
We would even obtain continuity (and not just semicontinuity) of E. Yet, what
would be lacking in this case is the compactness of minimizing sequences (and the
above sequence un, which is a minimizing sequence since E(un) → 0 = inf E, proves
that it is not possible to extract strongly convergent subsequences). This is hence
a clear example of the difficult task of choosing a suitable convergence for applying
the direct method of calculus of variations: not too strong, otherwise there is no
convergence; not too weak, otherwise lower semicontinuity could fail.

We finish this section by observing that the problem of non-existence of the
minimizer of E does not depend on the choice of the functional space. Indeed, even
if we considered:

inf

{
E(u) :=

∫ 1

0

(∣∣|u′(x)|2 − 1
∣∣+ |u(x)|2

)
dx : u ∈ C1([0, 1]), u(0) = u(1) = 0

}
,

we would have inf E = 0 and E(u) > 0 for every competitor, i.e., no existence. To
show this, it is enough to modify the above example in order to produce a sequence of
C1 functions. In this case, it will not be possible to make the term

∫ 1

0

∣∣|u′(x)|2−1
∣∣ dx

exactly vanish, since this requires u′ = ±1, but for a C1 function, this means either
u′ = 1 everywhere or u′ = −1 everywhere, and neither choice is compatible with
the boundary data. On the other hand, we can fix δ > 0, use again the Lipschitz
function U introduced above, and define a function Uδ : [0, 1] → R such that:

Uδ = U on
[
δ,
1

2
− δ

]
∪
[
1

2
+ δ, 1− δ

]
, Uδ(0) = Uδ(1) = 0, |Uδ| ⩽

1

2
, |U ′

δ| ⩽ 2.

We then extend Uδ to a 1-periodic function Ũδ defined on R, and set un,δ(x) :=
1
n
Ũδ(nt). We observe that we have |u′n,δ| ⩽ 2 and |u′n,δ| = 1 on a set:

An,δ =
n−1⋃
k=0

([
k

n
+
δ

n
,
2k + 1

2n
− δ

n

]
∪
[
2k + 1

2n
+
δ

n
,
k + 1

n
− δ

n

])
,

whose measure is 1− 4δ. We then have:

E(un,δ) =

∫
[0,1]\An,δ

∣∣|u′n,δ(x)|2 − 1
∣∣ dx+ ∫ 1

0

|un,δ(x)|2 dx ⩽ 12δ +
1

4n2
.

This shows inf E ⩽ 12δ and, δ > 0 being arbitrary, inf E = 0.

2 Optimality Conditions
We consider here the necessary optimality conditions for a typical variational prob-
lem. The result will be presented in 1D, but we will see that the procedure is exactly
the same in higher dimensions. We consider a function L : [a, b] × Rd × Rd → R.
We assume that L is C1 in (x, p) for a.e. x ∈ [a, b].

5



2.1 The Euler-Lagrange Equation

We start from the minimization problem:

min

{
E(u) :=

∫ b

a

L(x, u(x), u′(x)) dx : u ∈ U, u(a) = A, u(b) = B

}
,

where U is a functional space which could be, in most cases, a Sobolev space.
We assume anyway U ⊂ W 1,1([a, b];Rd), which guarantees both the existence of a
suitably defined derivative and the continuity of all functions in U. We also assume
that for every u ∈ U, the negative part of L(·, u, u′) is integrable, so that E is a
well-defined functional from U to R∪{+∞}. We assume that u is a solution of such
a minimization problem and that u + C∞

c ((a, b)) ⊂ U. This means that for every
φ ∈ C∞

c ((a, b)), we have E(u) ⩽ E(u+ tφ) for small t. We now fix the minimizer u
and a perturbation φ, and consider the one-variable function:

g(t) := E(u+ tφ)

which is defined in a neighborhood of t = 0 and minimal at t = 0. We now want to
compute g′(0).

In order to do so, we will assume that for every u ∈ U with E(u) < +∞, there
exists a δ > 0 such that we have the following integrability condition:

x 7→ sup
v∈B(u(x),δ),p∈B(u′(x),δ)

{|∇uL(x, v, p)|+ |∇pL(x, v, p)|} ∈ L1([a, b]).

We will discuss later some sufficient conditions on L that guarantee this is satisfied.
If this is the case, then we can differentiate with respect to t the function t 7→
L(x, u+ tφ, u′ + tφ′), and obtain:
d

dt
L(x, u+ tφ, u′ + tφ′) = ∇uL(x, u+ tφ, u′ + tφ′) ·φ+∇pL(x, u+ tφ, u′ + tφ′) ·φ′.

Since we assume φ ∈ C∞
c ((a, b)), both φ and φ′ are bounded, so that for small t, we

have (|φ(x)|, |φ′(x)|) ⩽ δ, and we can apply the assumption to obtain domination
in L1 of the pointwise derivatives. This shows that, for small t, we have:

g′(t) =

∫ b

a

(∇uL(x, u+ tφ, u′ + tφ′) · φ+∇pL(x, u+ tφ, u′ + tφ′) · φ′) dx.

In particular, we have:

g′(0) =

∫ b

a

(∇uL(x, u, u
′) · φ+∇pL(x, u, u

′) · φ′) dx.

Imposing g′(0) = 0, which comes from the optimality of u, means precisely that we
have, in the sense of distributions, the following differential equation, known as the
Euler-Lagrange equation:

d

dx
(∇pL(x, u, u

′)) = ∇uL(x, u, u
′).

This is a second-order differential equation (on the right-hand side, we have the
derivative in x of a term already involving u′), and as such, requires the choice of
two boundary conditions. These conditions are u(a) = A and u(b) = B, which
means that we are not facing a Cauchy problem (where we would prescribe u(a)
and u′(a)).
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2.2 Energy Conservation

When speaking of variational principles in mathematical physics, the word energy
has multiple meanings due to an ambiguity in the physical language, which is in-
creased by the mathematicians’ use of the notion. Sometimes we say that the
motion should minimize the total energy (and we think in this case of an integral
in x of a cost involving kinetic energy and potential energy; a more adapted name
which can be found in the literature is action), while on other occasions, we can
say that the energy is preserved along the evolution (and in this case, we think of
a quantity computed at every x).

Mathematically, this can be clarified in the following way: assume the inte-
grand in a variational problem is independent of the first variable and of the form
L(x, u, p) = 1

2
|p|2 + V (u). The Euler-Lagrange equation of the corresponding min-

imization problem would be u′′ = ∇uV (u). If we take the scalar product with u′,
we obtain:

d

dx

(
1

2
|u′(x)|2

)
= u′(x) · u′′(x) = u′(x) · ∇uV (u(x)) =

d

dx
V (u(x)).

This shows that the difference 1
2
|u′|2 − V (u) is constant in x. We see that the

minimization of the integral of 1
2
|u′|2+V (u) (i.e., the sum of the kinetic energy and

of V ) implies that the difference 1
2
|u′|2 − V (u) is constant. Which quantity should

be called energy is then a matter of convention (or taste).
In the very particular case V = 0, this result reads as “minimizers of the inte-

gral of the square of the speed have constant speed,” and is a well-known fact for
geodesics .

Remark 2.1 (Beltrami formula). The energy conservation principle described above
is a particular case of the so-called Beltrami formula, which is valid whenever the
integrand L does not depend explicitly on x. In this case, from the Euler-Lagrange
equation:

d

dx
(∇pL(u, u

′)) = ∇uL(u, u
′),

we can deduce:
L(u, u′)− u′ · ∇pL(u, u

′) = constant.

2.3 Examples of Growth Conditions on L

We now discuss under which conditions on L and U we can guarantee the integra-
bility condition:

x 7→ sup
v∈B(u(x),δ),p∈B(u′(x),δ)

{|∇uL(x, v, p)|+ |∇pL(x, v, p)|} ∈ L1([a, b]).

We will not give an exhaustive classification of all possible cases, which is probably
impossible to do. We will only consider three examples.
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1. Case of Polynomial Growth: L has growth of order α in terms of p and is
of the form:

L(x, u, p) = c|p|α + F (x, u),

which is the example we considered for existence in the case α = 2. Note that in
this case, a natural choice for the space U is U = W 1,α([a, b]), since any minimizing
sequence for E will be bounded in U, and the arguments of Section 1.2 prove that
a minimizer exists.

3. Case of Multiplicative Growth: L has growth of order α in terms of p, but
it has a multiplicative form:

L(x, u, p) = a(x, u)|p|α,

for a : [0, T ] × Rd → R bounded from below and above by positive constants. In
this case, we will also choose U = W 1,α([a, b]), since minimizing sequences will also
be bounded. However, we observe that Section 1.2 does not yet provide a proof of
existence since the semi-continuity of the functional u 7→

∫
L(x, u(x), u′(x))dx still

has to be proven.

3. Non-Standard Growth Example: L is of the form:

L(x, u, p) = eh(p) + F (x, u),

where h : Rd → R is a C1, Lipschitz continuous, and convex function such that
lim|p|→∞ h(p) = +∞.

Analysis of the Three Cases:

1. In the first case, let us assume that F is C1 with respect to x and that ∇uF
is continuous in (x, u). In this case, we have:

∇uL(x, u, p) = ∇uF (x, u), ∇pL(x, u, p) = αc|p|α−2p.

For every u ∈ U, we have u ∈ C0 and u′ ∈ Lα. In particular, assuming
|u| ⩽M , we have:

sup {|∇uF (x, v)| : x ∈ [a, b], |v| ⩽M + δ} < +∞.

Concerning ∇pL, we have:

sup
v∈B(u(x),δ),p∈B(u′(x),δ)

|∇pL(x, v, p)| ⩽ C(|u′(x)|α−1 + δα−1),

and this is integrable in x as soon as u′ ∈ Lα−1, which is satisfied since we
even have u′ ∈ Lα.
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2. In the second case, we assume that a is C1 in x and that ∇ua is continuous
in (x, u). We have:

∇uL(x, u, p) = ∇ua(x, u)|p|α, ∇pL(x, u, p) = αa(x, u)|p|α−2α.

Using u ∈ C0 and assuming |u| ⩽M , we have:

sup
x∈[a,b], |v|⩽M+δ

{|∇ua(x, u)|} (|u′(x)|+ δ)α ⩽ C(|u′(x)|α + δα).

This is integrable in x as soon as u′ ∈ Lα, which is true for every u ∈ U.

3. The third case is trickier because of the non-standard growth of L in p. A
natural choice for the space U would be a Sobolev-Orlicz space, which imposes
integrability of e|u′|, but it is not necessary to do so. Indeed, one can take,
for arbitrary p, U = W 1,p([a, b]). Thanks to the growth of L, any minimizing
sequence will be bounded in such a space, and the semicontinuity results will
also allow us to prove the existence of a solution.

2.4 Transversality Conditions

We consider now the case where the Dirichlet boundary conditions on u(a) and
u(b) are replaced by penalizations on the values of u at t = a, b. Let us consider for
instance the problem

min{E(u) + ψ0(u(a)) + ψ1(u(b)) | u ∈ U}, (2.1)

where, again, we set

E(u) :=

∫ b

a

L(t, u(t), u′(t)) dt. (2.2)

We assume that u is a minimizer and we set ut := u+ tφ, but we do not assume
φ ∈ C∞

c ((a, b)), since we are no longer obliged to preserve the values at the boundary
points. Let us set Eψ(u) := E(u) + ψ0(u(a)) + ψ1(u(b)) and jψ(t) := Eψ(ut). The
optimality of u provides fψ(0) ⩽ fψ(t) and we want to differentiate fψ in terms of
t.

The computation is exactly the same as before (and requires the very same
assumptions) concerning the term f(ε) = E(ut) and is very easy for the boundary
terms. We then obtain

f ′
ψ(0) =

∫ b

a

(∇xL(t, u, u
′) · φ+∇vL(t, u, u

′) · φ′) dt+∇ψ0(u(a))·φ(a)+∇ψ1(u(b))·φ(b).

(2.3)
This derivative should vanish for arbitrary φ, and it is possible to first con-

sider φ ∈ C∞
c ((a, b)). In this case we obtain exactly as before the Euler–Lagrange

equation
d

dt
(∇vL(t, u, u

′)) = ∇xL(t, u, u
′). (2.4)

9



We now assume that u and L are such that t 7→ ∇xL(t, u(t), u
′(t)) is L1. This

implies that t 7→ ∇vL(t, u(t), u
′(t)) is W 1,1 and in particular continuous. Moreover,

the term
∫ b
a
∇vL(t, u, u

′) · φ′ dt can be integrated by parts, thus obtaining

j′ψ(0) =

∫ b

a

∇xL(t, u, u
′) · φdt−

∫ b

a

(
d

dt
∇vL(t, u, u

′)

)
· φdt

+ (∇ψ0(u(a))−∇vL(a, u(a), u
′(a))) · φ(a)

+ (∇ψ1(u(b)) +∇vL(b, u(b), u
′(b))) · φ(b).

Since the first two integrals coincide thanks to the Euler–Lagrange equation, we
are finally only left with the boundary terms. Their sum should vanish for arbitrary
φ, which provides

∇ψ0(u(a))−∇vL(a, u(a), u
′(a)) = 0, (2.5)

∇ψ1(u(b)) +∇vL(b, u(b), u
′(b)) = 0. (2.6)

These two boundary conditions, called transversality conditions, replace in this
case the Dirichlet boundary conditions on u(a) and u(b), which are no longer avail-
able, and allow us to complete the equation. Of course, it is possible to combine
the problem with fixed endpoints and the Bolza problem with penalization on the
boundary, fixing one endpoint and penalizing the other. The four possible cases,
with their Euler–Lagrange systems, are the following.

1. For the problem

min

{∫ b

a

L(t, u(t), u′(t)) dt : u(a) = A, u(b) = B

}
, (2.7)

the Euler–Lagrange system is:

d

dt
(∇vL(t, u, u

′)) = ∇xL(t, u, u
′) in (a, b), (2.8)

u(a) = A, (2.9)
u(b) = B. (2.10)

2. For the problem

min

{∫ b

a

L(t, u(t), u′(t)) dt+ ψ0(u(a)) : u(b) = B

}
, (2.11)

the Euler–Lagrange system is:

d

dt
(∇vL(t, u, u

′)) = ∇xL(t, u, u
′) in (a, b), (2.12)

∇vL(a, u(a), u
′(a)) = ∇ψ0(u(a)), (2.13)
u(b) = B. (2.14)
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3. For the problem

min

{∫ b

a

L(t, u(t), u′(t)) dt+ ψ1(u(b)) : u(a) = A

}
, (2.15)

the Euler–Lagrange system is:

d

dt
(∇vL(t, u, u

′)) = ∇xL(t, u, u
′) in (a, b), (2.16)

u(a) = A, (2.17)
∇vL(b, u(b), u

′(b)) = −∇ψ1(u(b)). (2.18)

4. For the problem

min

{∫ b

a

L(t, u(t), u′(t)) dt+ ψ0(u(a)) + ψ1(u(b))

}
, (2.19)

the Euler–Lagrange system is:

d

dt
(∇vL(t, u, u

′)) = ∇xL(t, u, u
′) in (a, b), (2.20)

∇vL(a, u(a), u
′(a)) = ∇ψ0(u(a)), (2.21)

∇vL(b, u(b), u
′(b)) = −∇ψ1(u(b)). (2.22)

3 Regularity and the Lavrientev phenomenon
Let us consider again the problem

inf{E(u) | u ∈ U} = m (3.23)

where U := {u ∈ W 1,α(a, b) |u(a) = A, u(b) = B} and E(u) =
∫ b
a
L(x, u, u′) with L

of class C2.
Before focusing on some regularity issue for the 1 dimensional case, let us con-

sider the following existence theorem without proving it (we will see it for the
general case later). Assume that the following hypothesis are satisfied

(H1) there exist α > q ⩾ 1 and c1 > 0, c2, c3 ∈ R such that for every (x, u, p) ∈
[a, b]× R× R

L(x, u, p) ⩾ c1|p|α + c2|u|q + c3,

we will see that this ensures existence (notice that this condition says that
the Lagrangian has a polynomial growth).

(H2) for every δ > 0 there exists c(δ) such that for every (x, u, p) ∈ [a, b]×[−δ, δ]×R

|L(x, u, p)|, |∇uL(x, u, p)|, |∇pL(x, u, p)| ⩽ c(δ)(1 + |p|α),

this ensures that any minimizer of (3.23) satisfied the Euler-Lagrange equa-
tions we have studied above.
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(H3) for all (x, u, p) ∈ [a, b]× [−δ, δ]× R

D2
ppL(x, u, p) > 0.

Theorem 3.1 (Existence). Let L ∈ C2 and satisfy (H1) and (H3). Assume that
there exists u0 such that E(u0) <∞ then there exists a unique minimizer to (3.23)

Remark 3.2. (i) Notice that for the existence the hypothesis (H3) can be replace
by asking only convexity in the variable p.

(ii) The theorem easily applies to the case of Dirichlet energy L(x, u, p) = 1
2
|p|2

with α = 2. And also tot he natural generalization

L(x, u, p) =
1

α
|p|α + F (x, u)

where F is continuous and bounded from below (as we have seen at the be-
ginning of this long lecture)

3.1 Regularity

Lemma 3.3. Let L ∈ C2 and satisfy (H1),(H2) and (H3). Then any minimizer
Then any minimizer u ∈ W 1,α(a, b) of (3.23) is in fact in W 1,∞(a, b), and the
Euler-Lagrange equation holds almost everywhere, i.e.,

d

dx
[∇pL(x, u, u

′)] = ∇uL(x, u, u
′), a.e. x ∈ (a, b).

Proof. First, we know that the following equation holds:∫ b

a

[∇uL(x, u, u
′)v +∇pL(x, u, u

′)v′] dx = 0, ∀v ∈ C∞
0 (a, b).

We then divide the proof into two steps.
Step 1. Define:

φ(x) := ∇pL(x, u(x), u
′(x)) and ψ(x) := ∇L(x, u(x), u′(x)). (3.24)

We easily see that φ ∈ W 1,1(a, b) and that φ′(x) = ψ(x) for almost every x ∈ (a, b),
which means that

d

dx
[∇pL(x, u, u

′)] = ∇uLu(x, u, u
′), a.e. x ∈ (a, b). (3.25)

Indeed, since u ∈ W 1,α(a, b), and hence u ∈ L∞(a, b), we deduce from (H2) that
ψ ∈ L1(a, b). We also have from (3.24) that∫ b

a

ψ(x)v(x) dx = −
∫ b

a

φ(x)v′(x) dx, ∀v ∈ C∞
0 (a, b).

Since φ ∈ L1(a, b) (from (H2)), we have by the definition of weak derivatives the
claim, namely φ ∈ W 1,1(a, b) and φ′ = ψ a.e.
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Step 2. Since φ ∈ W 1,1(a, b), we have that φ ∈ C0([a, b]), which means that
there exists a constant c5 > 0 such that:

|φ(x)| = |∇pL(x, u(x), u
′(x))| ⩽ c5, ∀x ∈ [a, b]. (3.26)

Since u is bounded (and even continuous), let us say |u(x)| ⩽ δ for every
x ∈ [a, b], we have from (H3) (notice that this hypothesis implies convexity of
the lagrangian in p) that:

L(x, u, 0) ⩾ L(x, u, p)− p∇pL(x, u, p), ∀(x, u, p) ∈ [a, b]× [−δ, δ]× R.

Combining this inequality with (H1), we find that there exists c6 ∈ R such that, for
every (x, u, p) ∈ [a, b]× [−δ, δ]× R,

p∇pL(x, u, p) ⩾ L(x, u, p)− L(x, u, 0) ⩾ c1|p|α + c6.

Using (3.26) and the above inequality, we find:

c1|u′|α + c6 ⩽ u′∇pL(x, u, u
′) ⩽ |u′||∇pL(x, u, u

′)| ⩽ c5|u′|, a.e. x ∈ (a, b),

which implies, since α > 1, that |u′| is uniformly bounded. Thus, the lemma.

Theorem 3.4. Let L ∈ C∞([a, b] × R × R) satisfy (H1), (H2), and (H3). Then
any minimizer of (3.23) is in C∞([a, b]).

Proof. We divide the proof into two steps.
Step 1. We know from Lemma 3.3 that

x 7→ φ(x) := ∇pL(x, u(x), u
′(x))

is in W 1,1(a, b) and hence it is continuous. Consider now the Legendre transform of
the function L, that is

L∗(x, u, v) := sup
ξ∈R

{vp− L(x, u, ξ)},

then L∗ ∈ C∞([a, b]×R×R) (we will show it in 2 lectures!) and, for every x ∈ [a, b],
we have

φ(x) = ∇pL(x, u(x), u
′(x)) ⇐⇒ u′(x) = L∗

v(x, u(x), φ(x)).

Since ∇vL
∗, u, and φ are continuous, we infer that u′ is continuous and hence

u ∈ C1([a, b]). We therefore deduce that x 7→ ∇uL(x, u(x), u
′(x)) is continuous,

which, combined with the fact that
d

dx
[φ(x)] = ∇uL(x, u(x), u

′(x)), a.e. x ∈ (a, b),

(or equivalently ,by properties of L∗, φ′ = −∇uL
∗(x, u, φ)) leads to φ ∈ C1([a, b]).

Step 2. Considering now the system:{
u′(x) = ∇vL

∗(x, u(x), φ(x)),

φ′(x) = −∇uL
∗(x, u(x), φ(x)),

we can start our iteration. Indeed, since L∗ is C∞ and u and φ are C1, we deduce
from our system that, in fact, u and φ are C2. Returning to the system, we get
that u and φ are C3. Finally, we conclude that u is C∞, as desired.
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3.2 The Lavrientev phenomenon

We have seen here that, under some assumptions on the growth of the Lagrangian
function, we are able to prove existence results as well as the well-posedness of
the Euler-Lagrangian equations for a "weak" minimizer (remember that we are
working on Sobolev spaces). So it is quite natural to have the impression that
we have found the right space to work with and the correct "generalization" of
minimum problems involving an integral energy whose Lagrangian has a polynomial
(superlinear indeed) growth. Unfortunately this is just an impression (as it is often
the case in math!). If we want to consider the minimizer of problem (3.23) as a
"generalized solution" of the problem Minimize E(u) in the class of smooth functions
with u(a) = A and u(b) = B we should at least expect that the infimum of (3.23)
agrees with the infimum on the class of smooth functions, i.e.

inf
u∈W 1,1, u(a)=A, u(b)=B

E(u) = inf
u smooth, u(a)=A, u(b)=B

E(u).

Theorem 3.5 (Mania’s example). Let

L(x, u, p) := (x− u3)2p6, E(u) :=

∫ 1

0

L(x, u(x), u′(x)) dx.

Let
W∞ := {u ∈ W 1,∞(0, 1) : u(0) = 0, u(1) = 1},

W1 := {u ∈ W 1,1(0, 1) : u(0) = 0, u(1) = 1}.

Then
inf{E(u) |u ∈ W∞} > inf{E(u) |u ∈ W1} = 0.

Moreover, u(x) = x1/3 is a minimizer of E over W1.

Lemma 3.6. Let 0 < a < b < 1 and

Wa,b := {u ∈ W 1,∞(a, b) |u(a) = 1

4
a1/3, u(b) =

1

2
b1/3,

1

4
x1/3 ⩽ u(x) ⩽

1

2
x1/3 ∀x ∈ [a, b]}.

If L(x, u, p) = (x− u3)2p6 and

Ea,b(u) :=

∫ b

a

L(x, u(x), u′(x)) dx,

then
Ea,b(u) ⩾ c0b,

for every u ∈ Wa,b and for c0 = 72352−185−5.

Proof. Theorem 3.5 Step 1 We first prove that if u ∈ W∞, then there exist 0 <
a < b < 1 such that u ∈ Wa,b, namely

u(a) = 1
4
a1/3,

u(b) = 1
2
b1/3,

1
4
x1/3 ⩽ u(x) ⩽ 1

2
x1/3, ∀x ∈ [a, b].

(3.27)
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The existence of such a and b is easily seen . Let

A := {a ∈ (0, 1) |u(a) = 1

4
a1/3},

B := {b ∈ (0, 1) |u(b) = 1

2
b1/3}.

Since u is Lipschitz, u(0) = 0, and u(1) = 1, it follows that A ̸= ∅ and B ̸= ∅. Next,
choose

a := max{α : α ∈ A}, β := min{β : β ∈ B, β > a}.

It is then clear that a and v satisfy the required (3.27).
Step 2 We may therefore use the lemma to deduce that, for every u ∈ W∞,

E(u) =

∫ 1

0

(x− u3)2u′6 dx ⩾
∫ b

a

(x− u3)2u′6 dx ⩾ c0b > c0 > 0.

Thus,
inf{E(u) : u ∈ W∞} ⩾ c0 > 0.

Step 3 The fact that u(x) = x1/3 is a minimizer of E over all u ∈ W1 is trivial.
Hence,

inf{E(u) |u ∈ W1} = 0.

This achieves the proof of the theorem.

4 Some reminders

4.1 Sobolev Spaces in 1D

Given an open interval I ⊂ R and an exponent p ∈ [1,+∞], we define the Sobolev
space W 1,p(I) as:

W 1,p(I) :=

{
u ∈ Lp(I) : ∃g ∈ Lp(I) s.t.

∫
uφ′ dx = −

∫
gφ dx for all φ ∈ C∞

c (I)

}
.

The function g, if it exists, is unique, and will be denoted by u′ since it plays the
role of the derivative of u in the integration by parts.

The space W 1,p is endowed with the norm:

∥u∥W 1,p := ∥u∥Lp + ∥u′∥Lp .

With this norm, W 1,p is a Banach space, separable if p < +∞, and reflexive if
p ∈ (1,∞).

All functions u ∈ W 1,p(I) admit a continuous representative, which moreover
satisfies:

u(t0)− u(t1) =

∫ t0

t1

u′(x) dx.
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This representative is differentiable a.e., and the pointwise derivative coincides with
the function u′ a.e. Moreover, for p > 1, the same representative is also Hölder
continuous, of exponent α = 1 − 1

p
> 0. The injection from W 1,p into C0(I) is

compact if I is bounded.
If p = 2, the space W 1,p can be given a Hilbert structure, choosing as a norm:√

∥u∥2L2 + ∥u′∥2L2 ,

and is denoted by H1.
Higher-order Sobolev spaces W k,p can also be defined for k ∈ N by induction as

follows:
W k+1,p(I) := {u ∈ W k,p(I) : u′ ∈ W k,p(I)},

and the norm in W k+1,p is defined as ∥u∥Wk,p + ∥u′∥Wk,p . In the case p = 2, the
Hilbert spaces W k,2 are also denoted by Hk.

4.2 Hilbert Spaces

A Hilbert space is a Banach space whose norm is induced by a scalar product:
∥x∥ =

√
x · x.

Theorem (Riesz): If H is a Hilbert space, for every ξ ∈ H ′ there is a unique
vector h ∈ H such that ⟨ξ, x⟩ = h · x for every x ∈ H, and the dual space H ′ is
isomorphic to H.

In a Hilbert space H, we say that xn weakly converges to x and we write xn ⇀ x
if h · xn → h · x for every h ∈ H. Every weakly convergent sequence is bounded,
and if xn ⇀ x, using h = x, we find:

∥x∥2 = x · x = limx · xn ⩽ lim inf ∥x∥∥xn∥,

i.e., ∥x∥ ⩽ lim inf ∥xn∥.
In a Hilbert space H, every bounded sequence xn admits a weakly convergent

subsequence.

4.3 Weierstrass Criterion for the Existence of Minimizers,
Semicontinuity

The most common way to prove that a function admits a minimizer is called the
direct method in the calculus of variations. It simply consists of the classical Weier-
strass Theorem, possibly replacing continuity with semicontinuity.
Definition: On a metric space X, a function f : X → R ∪ {+∞} is said to be
lower semicontinuous (l.s.c. in short) if for every sequence xn → x, we have:

f(x) ⩽ lim inf f(xn).

A function f : X → R∪ {−∞} is said to be upper semicontinuous (u.s.c. in short)
if for every sequence xn → x, we have:

f(x) ⩾ lim sup f(xn).
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Definition: A metric space X is said to be compact if from any sequence xn, we
can extract a convergent subsequence xnk

→ x ∈ X.
Theorem (Weierstrass): If f : X → R ∪ {+∞} is lower semicontinuous and X
is compact, then there exists an x ∈ X such that:

f(x) = min{f(x) : x ∈ X}.

Proof: Define # := inf{f(x) : x ∈ X} ∈ R∪{−∞} (# = +∞ only if f is identically
+∞, but in this case, any point in X minimizes f). By definition, there exists a
minimizing sequence xn, i.e., points in X such that f(xn) → #. By compactness,
we can assume xn → x. By lower semicontinuity, we have:

f(x) ⩽ lim inf f(xn) = #.

On the other hand, we have f(x) ⩾ # since # is the infimum. This proves # =
f(x) ∈ R and this value is the minimum of f , realized at x.
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