Calculus of Variations Final exam

Warnings :

- Duration : 3 hours.
- Electronic devices (including cell phones) are forbidden.
- The exercises are independent of each other.
- Answers must be fully justified and written in a rigorous manner.
- If a result of the course is used, it must be clearly mentioned.

Exercise 1. Let $h : \mathbb{R} \to \mathbb{R}$ be a continuous and convex function such that

$$
h(t) \ge c|t|^q \quad \text{ for all } t \in \mathbb{R},
$$

for some $c > 0$ and $q > 1$, and let $\Omega \subset \mathbb{R}^2$ be a bounded open set. We define the functional $F: W^{1,2}(\Omega;\mathbb{R}^2) \to [0,+\infty]$ by

$$
F(u) = \int_{\Omega} \left[|\nabla u|^2 + h(\det \nabla u) \right] dx \quad \text{ for all } u \in W^{1,2}(\Omega; \mathbb{R}^2).
$$

1) Show that if $(u_n)_{n\in\mathbb{N}}$ is a sequence in $W^{1,2}(\Omega;\mathbb{R}^2)$ such that

$$
\sup_{n\in\mathbb{N}} F(u_n) < \infty,
$$

then, up to a subsequence, $u_n \rightharpoonup u$ weakly in $W^{1,2}(\Omega;\mathbb{R}^2)$ and $\det \nabla u_n \rightharpoonup \det \nabla u$ weakly in $L^q(\Omega;\mathbb{R}^2)$ for some $u \in W^{1,2}(\Omega;\mathbb{R}^2)$.

2) Let $w \in W^{1,p}(\Omega;\mathbb{R}^2)$ be such that $F(w) < \infty$. We consider the minimization problem :

$$
\inf_{v \in w + W_0^{1,2}(\Omega;\mathbb{R}^2)} F(v).
$$

Using the direct method in the calculus of variations, show that this minimization problem admits solutions.

Exercise 2. Let $f : \mathbb{R}^{d \times N} \to \mathbb{R}$ be a continuous function such that

$$
|f(\xi)| \le C(1 + |\xi|^p) \quad \text{ for all } \xi \in \mathbb{R}^{d \times N},
$$

for some $C > 0$ and $1 \leq p < \infty$. We recall that the quasiconvexification of f is defined by

$$
Qf(\xi) := \inf_{\varphi \in \mathcal{C}_c^{\infty}((0,1)^N;\mathbb{R}^d)} \int_{(0,1)^N} f(\xi + \nabla \varphi(y)) dy.
$$

Our goal is to show that

$$
Qf(\xi) = \inf_{\varphi \in \mathcal{C}^{\infty}_{\text{per}}((0,1)^N;\mathbb{R}^d)} \int_{(0,1)^N} f(\xi + \nabla \varphi(y)) dy,
$$

where $\varphi \in C^{\infty}_{per}((0,1)^N;\mathbb{R}^d)$ means that $\varphi : \mathbb{R}^N \to \mathbb{R}^d$ is of class C^{∞} and φ is $(0,1)^N$ -periodic.

Define

$$
\bar{f}(\xi) := \inf_{\varphi \in \mathcal{C}^{\infty}_{\text{per}}((0,1)^N;\mathbb{R}^d)} \int_{(0,1)^N} f(\xi + \nabla \varphi(y)) dy.
$$

- 1. Show that $\bar{f} \leq Qf$.
- 2. Let $\varphi \in C^{\infty}_{per}((0,1)^N;\mathbb{R}^d)$ and set $\varphi_j(x) := \frac{1}{j}\varphi(jx)$ for $j \in \mathbb{N}^*$ and $x \in \mathbb{R}^N$. Show that $\varphi_j \to 0$ strongly in $L^{\infty}((0,1)^N;\mathbb{R}^d)$ and that $|\nabla\varphi_j|^p \rightharpoonup \int_{(0,1)^N} |\nabla\varphi(y)|^p dy$ weakly* in $L^{\infty}((0,1)^N)$.
- 3. For all $t \in (0, 1/2)$, we define $Q_t := (t, 1-t)^N$ and set $Q := Q_0$. For all $\delta < t < 1/2$, we consider a cut-off function $\zeta \in \mathcal{C}_c^{\infty}(Q)$ such that $0 \leq \zeta \leq 1$ and $|\nabla \zeta| \leq C/\delta$ in Q , and $\zeta = 0$ on $Q \setminus Q_{t-\delta}$, $\zeta = 1$ on $Q_{t+\delta}$. Defining $\psi_j = \zeta \varphi_j$, show that for all $\xi \in \mathbb{R}^{d \times N}$,

$$
\begin{aligned} Qf(\xi) &\leq \int_Q f(\xi+\nabla\psi_j)\,dx \leq \int_Q f(\xi+\nabla\varphi_j)\,dx + f(\xi)|Q\setminus Q_{t-\delta}| \\ &\qquad \qquad + \frac{C}{\delta^p}\int_{L_\delta} |\varphi_j|^p\,dx + C\int_{L_\delta} (1+|\xi|^p+|\nabla\varphi_j|^p)\,dx, \end{aligned}
$$

where $L_{\delta} = Q_{t-\delta} \setminus Q_{t+\delta}$ and $C > 0$ is a constant independent of j, δ and t.

4. Deduce that

$$
Qf(\xi) \leq \int_Q f(\xi + \nabla \varphi(y)) dy + f(\xi) |Q \setminus Q_{t-\delta}| + C \left(1 + |\xi|^p + \int_Q |\nabla \varphi(y)|^p dy\right) \mathcal{L}^N(L_{\delta}).
$$

5. Show that

$$
Qf(\xi) \le \int_Q f(\xi + \nabla \varphi(y)) \, dy.
$$

6. Deduce that $Qf \leq \bar{f}$.

Exercise 3. Let $p > 1$, $\Omega \subset \mathbb{R}^N$ be a bounded set with Lipschitz boundary and $(f_{\varepsilon})_{\varepsilon>0}$ be a family of Carathéodory functions $f_{\varepsilon} : \Omega \times \mathbb{R}^{d \times N} \to [0, +\infty)$ satisfying the coercivity and growth conditions

 $\lambda |\xi|^p \le f_\varepsilon(x,\xi) \le \Lambda(1+|\xi|^p)$ for a.e. $x \in \Omega$, all $\xi \in \mathbb{R}^{d \times N}$ and all $\varepsilon > 0$,

for some $0 < \lambda < \Lambda < +\infty$. Let $F_{\varepsilon}: L^p(\Omega; \mathbb{R}^d) \to [0, +\infty]$ be the functional defined by

$$
F_{\varepsilon}(u) = \begin{cases} \int_{\Omega} f_{\varepsilon}(x, \nabla u) dx & \text{if } u \in W^{1, p}(\Omega; \mathbb{R}^d), \\ +\infty & \text{if } u \in L^p(\Omega; \mathbb{R}^d) \setminus W^{1, p}(\Omega; \mathbb{R}^d). \end{cases}
$$

According to the abstract Γ-convergence result, there is no loss of generality to assume that there is a subsequence $(\varepsilon_j)_{j\in\mathbb{N}}$ such that F_{ε_j} Γ-converges in $L^p(\Omega;\mathbb{R}^d)$ to some functional $F: L^p(\Omega;\mathbb{R}^d) \to$ $[0, +\infty]$ given by

$$
F(u) = \begin{cases} \int_{\Omega} f(x, \nabla u) dx & \text{if } u \in W^{1, p}(\Omega; \mathbb{R}^d), \\ +\infty & \text{if } u \in L^p(\Omega; \mathbb{R}^d) \setminus W^{1, p}(\Omega; \mathbb{R}^d), \end{cases}
$$

for some Carathéodory function $f : \Omega \times \mathbb{R}^{d \times N} \to \mathbb{R}$.

Let $\phi \in W^{1,p}(\Omega;\mathbb{R}^d)$ be fixed, define G_{ε}^{ϕ} and $G^{\phi}: L^p(\Omega;\mathbb{R}^d) \to [0, +\infty]$ by

$$
G_{\varepsilon}^{\phi}(u) = \begin{cases} \int_{\Omega} f_{\varepsilon}(x, \nabla u) dx & \text{if } u \in \phi + W_0^{1, p}(\Omega; \mathbb{R}^d), \\ +\infty & \text{otherwise}, \end{cases}
$$

and

$$
G^{\phi}(u) = \begin{cases} \int_{\Omega} f(x, \nabla u) dx & \text{if } u \in \phi + W_0^{1, p}(\Omega; \mathbb{R}^d), \\ +\infty & \text{otherwise.} \end{cases}
$$

Part I. The object of this part is to show that $G_{\varepsilon_j}^{\phi}$ Γ-converges in $L^p(\Omega;\mathbb{R}^d)$ to G^{ϕ} . In the sequel, we denote by G' and G'' the Γ-lower and the Γ-upper limits of $G_{\varepsilon_j}^{\phi}$, respectively.

- 1. Show that the lower bound $G^{\phi} \leq G'$ holds.
- 2. We now intend to prove the upper bound $G^{\phi} \geq G''$ through the construction of a recovery sequence. Let $u \in \phi + W_0^{1,p}$ $L_0^{1,p}(\Omega;\mathbb{R}^d).$
	- (a) Why does there exists a sequence $(u_j)_{j\in\mathbb{N}}$ in $W^{1,p}(\Omega;\mathbb{R}^d)$ such that $u_j \rightharpoonup u$ weakly in $W^{1,p}(\Omega;\mathbb{R}^d)$ and $\int_{\Omega} f_{\varepsilon_j}(x,\nabla u_j) dx \to \int_{\Omega} f(x,\nabla u) dx$?
	- (b) Let $(\mu_i)_{i\in\mathbb{N}}$ be the sequence of nonnegative Radon measures in Ω defined by

$$
\mu_j = (1 + |\nabla u|^p + |\nabla u_j|^p)\mathcal{L}^N.
$$

Show that there exists a subsequence (not relabeled) and a nonnegative Radon measure $\mu \in \mathcal{M}(\Omega)$ such that $\mu_j \to \mu$ weakly* in $\mathcal{M}(\Omega)$.

- (c) For all $t > 0$ small, let $\Omega_t = \{x \in \Omega : \text{dist}(x, \partial \Omega) > t\}$. For all $0 < \delta < t$, we consider a cut-off function $\zeta \in \mathcal{C}_c^{\infty}(\Omega)$ satisfying $0 \leq \zeta \leq 1$ and $|\nabla \zeta| \leq 2/\delta$ in Ω , $\zeta = 0$ in $\Omega \setminus \Omega_{t-\delta}$ and $\zeta = 1$ in $\Omega_{t+\delta}$. Define $v_j := \zeta u_j + (1 - \zeta)u$. Show that v_j belongs to $\phi + W_0^{1,p}$ $L^{1,p}(\Omega;\mathbb{R}^d)$ and that $v_j \to u$ strongly in $L^p(\Omega; \mathbb{R}^d)$.
- (d) Show that

$$
\int_{\Omega} f_{\varepsilon_j}(x, \nabla u_j) dx \ge \int_{\Omega} f_{\varepsilon_j}(x, \nabla v_j) dx - \frac{C}{\delta^p} \int_{L_{\delta}} |u_j - u|^p dx - C\mu_j(L_{\delta}) - C \int_{\Omega \setminus \Omega_{t-\delta}} (1 + |\nabla u|^p) dx,
$$

where $L_{\delta} = \Omega_{t-\delta} \setminus \Omega_{t+\delta}$ and $C > 0$ is a constant independent of j, δ and t.

(e) Deduce that

$$
\int_{\Omega} f(x, \nabla u) dx \ge \limsup_{j \to +\infty} \int_{\Omega} f_{\varepsilon_j}(x, \nabla v_j) dx - C\mu(\overline{L_{\delta}}) - C \int_{\Omega \setminus \Omega_{t-\delta}} (1 + |\nabla u|^p) dx.
$$

(f) Prove first that for all $0 < \delta < t$,

$$
G^{\phi}(u) \ge G''(u) - C\mu(\overline{L_{\delta}}) - \Lambda \int_{\Omega \setminus \Omega_{t-\delta}} (1 + |\nabla u|^p) dx,
$$

then that for all $t > 0$ small,

$$
G^{\phi}(u) \ge G''(u) - C\mu(\partial\Omega_t) - \Lambda \int_{\Omega \setminus \Omega_t} (1 + |\nabla u|^p) dx,
$$

and finally that

$$
G^{\phi}(u) \ge G''(u).
$$

(g) Conclude.

3. Show that

$$
\lim_{j \to +\infty} \inf_{v \in \phi + W_0^{1,p}(\Omega; \mathbb{R}^d)} \int_{\Omega} f_{\varepsilon_j}(x, \nabla v) dx = \min_{v \in \phi + W_0^{1,p}(\Omega; \mathbb{R}^d)} \int_{\Omega} f(x, \nabla v) dx.
$$

Part II. In this second part, we show additional properties of the limit density f . For simplicity, we assume that $\Omega = (0,1)^N$ is the unit cube.

- 1. Show that if $(x, \xi) \mapsto f_{\varepsilon}(x, \xi)$ is independent of x, then so is f.
- 2. Prove that f is quasiconvex.
- 3. Show that $Qf_{\varepsilon_j}(\xi) \to f(\xi)$ for all $\xi \in \mathbb{R}^{d \times N}$.