

L convergence 1 General theory We went to define a notion of cu, Wemed D -cu ssuring (i) CV of the minum/zers (in) ou of the energy Given a metric spece (x, d) and a sequence of fauchianal E; X-> RUG+003 We would like to define e limit E Setifying: o If $w_j \in X$ 3.1. E. (w_j) -inf ε_j and $w_j \to w$ $= -\frac{1}{2} \pi r^2 + \frac{1}{2} \pi \pi \pi \pi \pi$ o $\left|\int_{K} \mathcal{E}_{j} = \mathcal{E}_{j}(w_{j}) \right| \rightarrow \mathcal{E}(w) = \inf_{X} \mathcal{E}$ def (M-CU) We say that (E;), M-CU to E if tuex:

i) \forall Sujfe \times 5.7. $u_j \rightarrow u$ we heve (Loner Band)
 $\mathcal{E}(u) \in \text{lim inf } \mathcal{E}_j(u_0)$ \overline{f} $(\overline{u},)$; $\in X$ s.t. $\overline{u}, -\infty$ and $(\overline{v}$ Boand
 ∞
 ∞ ∞ $\overline{u}, -\infty$ and $(\overline{v}$ \overline{ii} then the freudomenter nouvet of M-cu vs the forRowing one $+ h m$ $+ h$ sume \mathcal{E}_j av te \mathcal{E}_j . If $\{w_j\}_j$ is a sequence in X $S.f.$ $\mu_j \rightarrow \mu$ and $\ell \partial m_j \mathcal{E}_j(\mu_j) = \ell \hat{m}_j$ in $f_{\chi} \mathcal{E}_j$ then le is a minimizer of E and moneaver $E(u) = min_{x} E = lim_{i-s=0} inf E_{y}$ Mi - Su We Know that Since $\mathcal{E}(\mu)$ \leq \lim_{i} in $\mathcal{E}_j(\mu)$ $4 \sigma \in \times$ 3π ; $4 \cdot 4 \cdot 4$; -2π and Moreager $E(\mathbf{\bar{\sigma}}) \rightarrow E(\mathbf{\sigma})$ $lim_{s}\inf_{K}\mathcal{E}_{s}\le lim_{j}\mathcal{E}_{s}(\sqrt{15}_{j})\le \mathcal{E}(\infty)$ thus

Which shows that $\epsilon(\omega) \leq \epsilon(\omega)$ thre \times and $E(u)$ = min ϵ ϵ lim inf ϵ ; ϵ $E(\sigma)$ and taking σ = n we obtain the result \overline{D} From the definition of P-cv we have the following properfies $Rmk 1$ Γf ε ; Γ -cv f_0 Γ then Γ is l ,s.c. in X let un a. Sine we have the lim-up bound Heck we can find a requere \bar{u}^k -> u^k s.7. $\lfloor \lim_{n \to \infty} C_i(u_n^n) \rfloor = \mathcal{E}(u^n)$. By recurrence we can build a non-decreesing requence on of intepers $s.4.$ \forall K \in N) and $\forall j \geq 0$ $d\left(\overline{u}_{j}^{\kappa},u^{\kappa}\right)\in \frac{1}{K} \left(\mathcal{E}_{j}(u_{0}^{\kappa})-\mathcal{E}(u^{\kappa})\right)\in \frac{1}{K}$ Define $\omega_j = \overline{u}_j^{\text{te}}$ if $\overline{c_k} \leq j \leq \overline{c_{k+1}}$ s.d. M -> μ $E(u)$ \leq lim in $\{E_{j}(\sigma_{j})\}\leq$ lim in f $E_{\sigma_{j}}(\sigma_{j})$ \leq liminf $\mathcal{E}(u^k)$ $Rmkz$ TP E_i Sz then are rubsequence \mathcal{E}_{11} $\stackrel{\Gamma}{\longrightarrow}$ \mathcal{E} . To show the Pom-fut we consider

By rearrence build a sequence du non-demesing
5.1. HEEM VIZON $d(u_{\theta}^{k},u)\in\frac{1}{K}$ $\mathfrak{E}_{j}(u_{j}^{k})\in\mathcal{E}^{k}(u)+\frac{2}{K}$ f_{α} ke \overline{u}_{j} = u_{j}^{k} if \leq_{k} \leq j \leq \leq_{k+1} $s+1$. \overline{u}_{j} \rightarrow u and lim $wp E_j(\bar{\omega}_j) \leq \mathcal{E}^{\alpha}(\alpha)$ $\boldsymbol{\varpi}$ In separable metric sperces Γ cu enjoys a nice Compectuess property prop let (x,d) a sep. metric space and \mathcal{E}_j : x > R uz+a) a sepvence of functionals. Then 3 $\varepsilon_{i\mathbf{k}}$ and $E: X \rightarrow \mathbb{R} \cup \{ \text{for } 3.4. \quad \mathcal{E}_{\text{in}} \xrightarrow{\Gamma} \mathcal{E}$ proof Since X is sep. 3 a contessée juj? And by drageme estrection re cen extreet a rubsequence Ein s.f. $lim_{k}\frac{inf}{u_{k}}$ \mathcal{E}_{in} $\begin{array}{|l} \hline \text{exists} & \text{if} \text{ is } \\ \hline \end{array}$ HuEX define the M-liminf and M-limoup. ϵ^n then we have only to Show that $\mathcal{E}'=\mathcal{E}''$. We oliveys have $\epsilon' \in \epsilon''$

let next and iEM s.t. ncU ; if $\mu_{n} \rightarrow u$. then we have like Vi far K lange evangh aud lim inf $\varepsilon_{j_k} \leq \lim_{k \to \infty} \inf \varepsilon_{j_k}(u_k)$ $2\pi\frac{\delta P}{\delta \epsilon N}$ lim sup inf $\epsilon_{j\kappa} \epsilon \epsilon'(\omega)$ Since Ui is a besus we have $\frac{\delta v}{\delta}$ liming $\frac{1}{k}$ $\$ The N we can find on GN st. + K> on we have in f_{∞} $\mathcal{E}_{j_{k}}(\sigma) \in \mathcal{E}'(u) + \frac{1}{N}$ $\pm \omega_{n}^{\mathfrak{m}} \epsilon \times st. \quad d(u_{\iota} \omega_{n}^{\mathfrak{m}}) \epsilon \frac{1}{n} \text{ with.}$ $\mathcal{E}_{\text{th}}(w^h) \in \mathcal{E}'(u) + \frac{2}{h}$ $\overline{\omega}_h = \omega_h^u$ if $\overline{\omega}_h \in K$ $\leq \omega_{n+1}$ $\overline{\omega}_h \supset u$ and Hquin $\mathcal{E}''(u) \leq \limsup \mathcal{E}_{j_{h}}(\overline{v}_{h}) \leq \mathcal{E}'(u)$

The requence $\mathscr{E}_j \stackrel{\Gamma}{\rightarrow} \mathscr{E}$ if and arey if for ell inbrequence there exists a subsequence Which M-cu to E Drosef we have erready seen that if E- SE than for soe ε in we have ε in Γ Now assume that E & S . It means \bullet 3 efter \overline{u}_j - \circ s.t. liminf $\mathcal{E}_j(\overline{u}_j) < \mathcal{E}(u)$ \bullet or limoop $\mathcal{E}_{\hat{0}}(u_j) > \mathcal{E}(u)$ + $u_j \to \mu$. Istage we can extract a subsequeur s.t. $\mathcal{L}v_{m_{K}}\mathcal{E}_{\mathcal{S}_{\mathcal{K}}}(\overline{\mu}_{\mathcal{K}})=\mathcal{L}v_{m}\inf\mathcal{E}_{\mathcal{S}}(\overline{\mu}_{\mathcal{S}})<\mathcal{E}(\mu)$ By hyp from this subsequence E in we can extrect another subsequence $\mathcal{E}_{j_{k_{e}}}\rightarrow\mathcal{E}$ and in particuler $\mathcal{E}(\omega) \leq \liminf_{\rho} \mathcal{E}_{\mathcal{S}_{k_{\rho}}}(\overline{\omega}_{\mathcal{S}_{k_{\rho}}}) = \lim_{\rho} \mathcal{E}_{\mathcal{S}_{k_{\rho}}}(\overline{\omega}_{i_{k_{\rho}}}) = \lim_{k \to \infty} \mathcal{E}_{\mathcal{S}_{k_{\rho}}}(\overline{\omega}_{i_{k_{\rho}}})$ 2nd cose = = reigns u et n s.t. E(u) = limmp; in f E; We can extract a subsequence $\lim_{k \to \infty} \inf \{ \xi_k = k \text{ in } k \text{ is a } k \in \mathbb{Z}_n \}$ By hup we ean extract another rubrequence $\varepsilon_{j_{k_e}}$ P - cy ϵ

7 Tie - 1 (MIEU for l'earge enough) 5.7. $\mathcal{E}(\mu) = \lim_{L} \mathcal{E}_{j_{re}}(\bar{\mu}_{e}) \geq \lim_{L} \inf_{U} \mathcal{E}_{j_{he}} = \lim_{K} \inf_{U} \mathcal{E}_{j_{ice}}$ $X = L^{2}(R)$ $\uparrow_{n} L^{2}(R)$
 $\mathcal{E}_{n}(n) = \int_{0}^{n} \int_{0}^{1} \frac{1}{P} |\nabla u|^{p} + \frac{1}{P} n u w v_{e}^{1, p}$
 $\downarrow_{n} L^{n}(n) = \int_{0}^{n} \int_{0}^{1} \frac{1}{P} |\nabla u|^{p} + \frac{1}{P} n u w v_{e}^{1, p}$ Example Assume $f_u = f$ then we have $E_u - \Sigma$ $\begin{pmatrix}$ (liminf) $U_0 \rightarrow U & I \cup C^* \quad \text{and} \ \mathcal{E}_0 & (u_0) \in C \end{pmatrix}$ the $W^{1,p}$ nous of u_n is bounded
 $\nabla u_n \rightarrow \nabla u$ in L^p and by semicontinuty ne flirapshining + Stuha -> Stu since we have weak of of the and strang of u $liminf$ $E(u_n) = E(u)$ ~ (limop) take Mu all with E(u)<r0