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1 Regularity and the Lavrientev phenomenon
Let us consider again the problem

inf{E(u) | u ∈ U} = m (1.1)

where U := {u ∈ W 1,α(a, b) |u(a) = A, u(b) = B} and E(u) =
∫ b

a
L(x, u, u′) with L

of class C2.
Before focusing on some regularity issue for the 1 dimensional case, let us con-

sider the following existence theorem without proving it (we will see it for the
general case later). Assume that the following hypothesis are satisfied

(H1) there exist α > q ⩾ 1 and c1 > 0, c2, c3 ∈ R such that for every (x, u, p) ∈
[a, b]× R× R

L(x, u, p) ⩾ c1|p|α + c2|u|q + c3,

we will see that this ensures existence (notice that this condition says that
the Lagrangian has a polynomial growth).

(H2) for every δ > 0 there exists c(δ) such that for every (x, u, p) ∈ [a, b]×[−δ, δ]×R

|L(x, u, p)|, |∇uL(x, u, p)|, |∇pL(x, u, p)| ⩽ c(δ)(1 + |p|α),
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this ensures that any minimizer of (1.1) satisfied the Euler-Lagrange equations
we have studied above.

(H3) for all (x, u, p) ∈ [a, b]× [−δ, δ]× R

D2
ppL(x, u, p) > 0.

Theorem 1.1 (Existence). Let L ∈ C2 and satisfy (H1) and (H3). Assume that
there exists u0 such that E(u0) <∞ then there exists a unique minimizer to (1.1)

Remark 1.2. (i) Notice that for the existence the hypothesis (H3) can be replace
by asking only convexity in the variable p.

(ii) The theorem easily applies to the case of Dirichlet energy L(x, u, p) = 1
2
|p|2

with α = 2. And also tot he natural generalization

L(x, u, p) =
1

α
|p|α + F (x, u)

where F is continuous and bounded from below (as we have seen at the be-
ginning of this long lecture)

1.1 Regularity

Lemma 1.3. Let L ∈ C2 and satisfy (H1),(H2) and (H3). Then any minimizer
Then any minimizer u ∈ W 1,α(a, b) of (1.1) is in fact in W 1,∞(a, b), and the Euler-
Lagrange equation holds almost everywhere, i.e.,

d

dx
[∇pL(x, u, u

′)] = ∇uL(x, u, u
′), a.e. x ∈ (a, b).

Proof. First, we know that the following equation holds:∫ b

a

[∇uL(x, u, u
′)v +∇pL(x, u, u

′)v′] dx = 0, ∀v ∈ C∞
0 (a, b).

We then divide the proof into two steps.
Step 1. Define:

φ(x) := ∇pL(x, u(x), u
′(x)) and ψ(x) := ∇L(x, u(x), u′(x)). (1.2)

We easily see that φ ∈ W 1,1(a, b) and that φ′(x) = ψ(x) for almost every x ∈ (a, b),
which means that

d

dx
[∇pL(x, u, u

′)] = ∇uLu(x, u, u
′), a.e. x ∈ (a, b). (1.3)

Indeed, since u ∈ W 1,α(a, b), and hence u ∈ L∞(a, b), we deduce from (H2) that
ψ ∈ L1(a, b). We also have from (1.2) that∫ b

a

ψ(x)v(x) dx = −
∫ b

a

φ(x)v′(x) dx, ∀v ∈ C∞
0 (a, b).
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Since φ ∈ L1(a, b) (from (H2)), we have by the definition of weak derivatives the
claim, namely φ ∈ W 1,1(a, b) and φ′ = ψ a.e.

Step 2. Since φ ∈ W 1,1(a, b), we have that φ ∈ C0([a, b]), which means that
there exists a constant c5 > 0 such that:

|φ(x)| = |∇pL(x, u(x), u
′(x))| ⩽ c5, ∀x ∈ [a, b]. (1.4)

Since u is bounded (and even continuous), let us say |u(x)| ⩽ δ for every
x ∈ [a, b], we have from (H3) (notice that this hypothesis implies convexity of
the lagrangian in p) that:

L(x, u, 0) ⩾ L(x, u, p)− p∇pL(x, u, p), ∀(x, u, p) ∈ [a, b]× [−δ, δ]× R.
Combining this inequality with (H1), we find that there exists c6 ∈ R such that, for
every (x, u, p) ∈ [a, b]× [−δ, δ]× R,

p∇pL(x, u, p) ⩾ L(x, u, p)− L(x, u, 0) ⩾ c1|p|α + c6.

Using (1.4) and the above inequality, we find:

c1|u′|α + c6 ⩽ u′∇pL(x, u, u
′) ⩽ |u′||∇pL(x, u, u

′)| ⩽ c5|u′|, a.e. x ∈ (a, b),

which implies, since α > 1, that |u′| is uniformly bounded. Thus, the lemma.
Theorem 1.4. Let L ∈ C∞([a, b] × R × R) satisfy (H1), (H2), and (H3). Then
any minimizer of (1.1) is in C∞([a, b]).
Proof. We divide the proof into two steps.
Step 1. We know from Lemma 1.3 that

x 7→ φ(x) := ∇pL(x, u(x), u
′(x))

is in W 1,1(a, b) and hence it is continuous. Consider now the Legendre transform of
the function L, that is

L∗(x, u, v) := sup
ξ∈R

{vp− L(x, u, ξ)},

then L∗ ∈ C∞([a, b]×R×R) (we will show it in 2 lectures!) and, for every x ∈ [a, b],
we have

φ(x) = ∇pL(x, u(x), u
′(x)) ⇐⇒ u′(x) = L∗

v(x, u(x), φ(x)).

Since ∇vL
∗, u, and φ are continuous, we infer that u′ is continuous and hence

u ∈ C1([a, b]). We therefore deduce that x 7→ ∇uL(x, u(x), u
′(x)) is continuous,

which, combined with the fact that
d

dx
[φ(x)] = ∇uL(x, u(x), u

′(x)), a.e. x ∈ (a, b),

(or equivalently ,by properties of L∗, φ′ = −∇uL
∗(x, u, φ)) leads to φ ∈ C1([a, b]).

Step 2. Considering now the system:{
u′(x) = ∇vL

∗(x, u(x), φ(x)),

φ′(x) = −∇uL
∗(x, u(x), φ(x)),

we can start our iteration. Indeed, since L∗ is C∞ and u and φ are C1, we deduce
from our system that, in fact, u and φ are C2. Returning to the system, we get
that u and φ are C3. Finally, we conclude that u is C∞, as desired.
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1.2 The Lavrientev phenomenon

We have seen here that, under some assumptions on the growth of the Lagrangian
function, we are able to prove existence results as well as the well-posedness of
the Euler-Lagrangian equations for a "weak" minimizer (remember that we are
working on Sobolev spaces). So it is quite natural to have the impression that
we have found the right space to work with and the correct "generalization" of
minimum problems involving an integral energy whose Lagrangian has a polynomial
(superlinear indeed) growth. Unfortunately this is just an impression (as it is often
the case in math!). If we want to consider the minimizer of problem (1.1) as a
"generalized solution" of the problem Minimize E(u) in the class of smooth functions
with u(a) = A and u(b) = B we should at least expect that the infimum of (1.1)
agrees with the infimum on the class of smooth functions, i.e.

inf
u∈W 1,1, u(a)=A, u(b)=B

E(u) = inf
u smooth, u(a)=A, u(b)=B

E(u).

Theorem 1.5 (Mania’s example). Let

L(x, u, p) := (x− u3)2p6, E(u) :=

∫ 1

0

L(x, u(x), u′(x)) dx.

Let
W∞ := {u ∈ W 1,∞(0, 1) : u(0) = 0, u(1) = 1},

W1 := {u ∈ W 1,1(0, 1) : u(0) = 0, u(1) = 1}.

Then
inf{E(u) |u ∈ W∞} > inf{E(u) |u ∈ W1} = 0.

Moreover, u(x) = x1/3 is a minimizer of E over W1.

Lemma 1.6. Let 0 < a < b < 1 and

Wa,b := {u ∈ W 1,∞(a, b) |u(a) = 1

4
a1/3, u(b) =

1

2
b1/3,

1

4
x1/3 ⩽ u(x) ⩽

1

2
x1/3 ∀x ∈ [a, b]}.

If L(x, u, p) = (x− u3)2p6 and

Ea,b(u) :=

∫ b

a

L(x, u(x), u′(x)) dx,

then
Ea,b(u) ⩾ c0b,

for every u ∈ Wa,b and for c0 = 72352−185−5.

Proof. Theorem 1.5 Step 1 We first prove that if u ∈ W∞, then there exist 0 <
a < b < 1 such that u ∈ Wa,b, namely

u(a) = 1
4
a1/3,

u(b) = 1
2
b1/3,

1
4
x1/3 ⩽ u(x) ⩽ 1

2
x1/3, ∀x ∈ [a, b].

(1.5)
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The existence of such a and b is easily seen . Let

A := {a ∈ (0, 1) |u(a) = 1

4
a1/3},

B := {b ∈ (0, 1) |u(b) = 1

2
b1/3}.

Since u is Lipschitz, u(0) = 0, and u(1) = 1, it follows that A ̸= ∅ and B ̸= ∅. Next,
choose

a := max{α : α ∈ A}, β := min{β : β ∈ B, β > a}.

It is then clear that a and v satisfy the required (1.5).
Step 2 We may therefore use the lemma to deduce that, for every u ∈ W∞,

E(u) =

∫ 1

0

(x− u3)2u′6 dx ⩾
∫ b

a

(x− u3)2u′6 dx ⩾ c0b > c0 > 0.

Thus,
inf{E(u) : u ∈ W∞} ⩾ c0 > 0.

Step 3 The fact that u(x) = x1/3 is a minimizer of E over all u ∈ W1 is trivial.
Hence,

inf{E(u) |u ∈ W1} = 0.

This achieves the proof of the theorem.

2 Some reminders

2.1 Sobolev Spaces in 1D

Given an open interval I ⊂ R and an exponent p ∈ [1,+∞], we define the Sobolev
space W 1,p(I) as:

W 1,p(I) :=

{
u ∈ Lp(I) : ∃g ∈ Lp(I) s.t.

∫
uφ′ dx = −

∫
gφ dx for all φ ∈ C∞

c (I)

}
.

The function g, if it exists, is unique, and will be denoted by u′ since it plays the
role of the derivative of u in the integration by parts.

The space W 1,p is endowed with the norm:

∥u∥W 1,p := ∥u∥Lp + ∥u′∥Lp .

With this norm, W 1,p is a Banach space, separable if p < +∞, and reflexive if
p ∈ (1,∞).

All functions u ∈ W 1,p(I) admit a continuous representative, which moreover
satisfies:

u(t0)− u(t1) =

∫ t0

t1

u′(x) dx.
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This representative is differentiable a.e., and the pointwise derivative coincides with
the function u′ a.e. Moreover, for p > 1, the same representative is also Hölder
continuous, of exponent α = 1 − 1

p
> 0. The injection from W 1,p into C0(I) is

compact if I is bounded.
If p = 2, the space W 1,p can be given a Hilbert structure, choosing as a norm:√

∥u∥2L2 + ∥u′∥2L2 ,

and is denoted by H1.
Higher-order Sobolev spaces W k,p can also be defined for k ∈ N by induction as

follows:
W k+1,p(I) := {u ∈ W k,p(I) : u′ ∈ W k,p(I)},

and the norm in W k+1,p is defined as ∥u∥Wk,p + ∥u′∥Wk,p . In the case p = 2, the
Hilbert spaces W k,2 are also denoted by Hk.

2.2 Hilbert Spaces

A Hilbert space is a Banach space whose norm is induced by a scalar product:
∥x∥ =

√
x · x.

Theorem (Riesz): If H is a Hilbert space, for every ξ ∈ H ′ there is a unique
vector h ∈ H such that ⟨ξ, x⟩ = h · x for every x ∈ H, and the dual space H ′ is
isomorphic to H.

In a Hilbert space H, we say that xn weakly converges to x and we write xn ⇀ x
if h · xn → h · x for every h ∈ H. Every weakly convergent sequence is bounded,
and if xn ⇀ x, using h = x, we find:

∥x∥2 = x · x = limx · xn ⩽ lim inf ∥x∥∥xn∥,

i.e., ∥x∥ ⩽ lim inf ∥xn∥.
In a Hilbert space H, every bounded sequence xn admits a weakly convergent

subsequence.

2.3 Weierstrass Criterion for the Existence of Minimizers,
Semicontinuity

The most common way to prove that a function admits a minimizer is called the
direct method in the calculus of variations. It simply consists of the classical Weier-
strass Theorem, possibly replacing continuity with semicontinuity.
Definition: On a metric space X, a function f : X → R ∪ {+∞} is said to be
lower semicontinuous (l.s.c. in short) if for every sequence xn → x, we have:

f(x) ⩽ lim inf f(xn).

A function f : X → R∪ {−∞} is said to be upper semicontinuous (u.s.c. in short)
if for every sequence xn → x, we have:

f(x) ⩾ lim sup f(xn).

6



Definition: A metric space X is said to be compact if from any sequence xn, we
can extract a convergent subsequence xnk

→ x ∈ X.
Theorem (Weierstrass): If f : X → R ∪ {+∞} is lower semicontinuous and X
is compact, then there exists an x ∈ X such that:

f(x) = min{f(x) : x ∈ X}.

Proof: Define # := inf{f(x) : x ∈ X} ∈ R∪{−∞} (# = +∞ only if f is identically
+∞, but in this case, any point in X minimizes f). By definition, there exists a
minimizing sequence xn, i.e., points in X such that f(xn) → #. By compactness,
we can assume xn → x. By lower semicontinuity, we have:

f(x) ⩽ lim inf f(xn) = #.

On the other hand, we have f(x) ⩾ # since # is the infimum. This proves # =
f(x) ∈ R and this value is the minimum of f , realized at x.

2.4 Sobolev Spaces in Higher Dimensions

Given an open domain Ω ⊂ Rd and an exponent p ∈ [1,+∞], we define the Sobolev
space W 1,p(Ω) as:

W 1,p(Ω) := {u ∈ Lp(Ω) : ∀i,∃gi ∈ Lp(Ω) s.t.
∫
Ω

u∂xi
φdx = −

∫
Ω

giφdx, ∀φ ∈ C∞
c (Ω)}.

Properties:

• The functions gi, if they exist, are unique and form a vector denoted by ∇u,
which plays the role of the derivative.

• The norm on W 1,p(Ω) is defined as:

∥u∥W 1,p = ∥u∥Lp + ∥∇u∥Lp .

• W 1,p(Ω) is a Banach space, separable if p <∞, and reflexive if p ∈ (1,∞).

Functions in W 1,p(Ω) can also be characterized as those functions u ∈ Lp(Ω)
whose translations satisfy:

∥uh − u∥Lp(Ω′) ⩽ C|h|,

for every subdomain Ω′ ⊂⊂ Ω and |h| sufficiently small. The optimal constant C
in this inequality equals ∥∇u∥Lp .

Sobolev Embeddings

• If p < d, then W 1,p(Ω) is continuously embedded into Lp∗(Ω), where p∗ = pd
d−p

.

• If p = d, then W 1,p(Ω) embeds compactly into Lq(Ω) for any q <∞.

• If p > d, then all functions in W 1,p(Ω) admit a continuous representative,
which is Hölder continuous with exponent α = 1− d

p
.
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2.5 Traces of Sobolev Functions

If Ω is a smooth domain and p > 1, the trace operator:

Tr : W 1,p(Ω) → Lp(∂Ω),

has the following properties:

• It is linear, continuous, and compact.

• For Lipschitz functions u, Tr[u] = u|∂Ω.

• The kernel of Tr is precisely W 1,p
0 (Ω).

• For p > d, Tr maps into C0,α(∂Ω), with α = 1− d
p
.
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