Numerical methods for Multi-Marginal Optimal Transport

From geodesics in Wasserstein space to variational Mean Field Games

Luca Nenna
(LMO) Université Paris-Saclay

Lecture 4, 09/03/2022, Orsay
Laboratoire de Mathématiques $_{\text {Université }}$

Overview

(1) Introduction: Classical vs Multi-Marginal Optimal Transport

- The three universes of Numerical Optimal Transportation
- The discretized problem

Overview

(1) Introduction: Classical vs Multi-Marginal Optimal Transport

- The three universes of Numerical Optimal Transportation
- The discretized problem
(2) Entropic Optimal Transport
- The numerical method
- How the regularization works
- Sinkhornizing the world!!
- Eulerian and Lagrangian formulation for MFG with quadratic Hamiltonian

Overview

(1) Introduction: Classical vs Multi-Marginal Optimal Transport

- The three universes of Numerical Optimal Transportation
- The discretized problem
(2) Entropic Optimal Transport
- The numerical method
- How the regularization works
- Sinkhornizing the world!!
(3) Application I: MMOT for computing geodesics in the Wasserstein space
- Eulerian and Lagrangian formulation for MFG with quadratic Hamiltonian

Overview

(1) Introduction: Classical vs Multi-Marginal Optimal Transport

- The three universes of Numerical Optimal Transportation
- The discretized problem
(2) Entropic Optimal Transport
- The numerical method
- How the regularization works
- Sinkhornizing the world!!
(3) Application I: MMOT for computing geodesics in the Wasserstein space
(4) Application II: MMOT and variational Mean Field Games
- Eulerian and Lagrangian formulation for MFG with quadratic Hamiltonian

Introduction: Classical vs Multi-Marginal Optimal Transport

Classical Optimal Transportation Theory

Let $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)\left(X \subseteq \mathbb{R}^{n}\right.$ and $\left.Y \subseteq \mathbb{R}^{n}\right)$, the Optimal Transport (OT) problem is defined as follows

$$
\begin{equation*}
(\mathcal{M K}) \quad E_{c}(\mu, \nu)=\inf \left\{\mathcal{E}_{c}(\gamma) \mid \gamma \in \Pi(\mu, \nu)\right\} \tag{1}
\end{equation*}
$$

where $\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}(X \times Y) \mid \quad \pi_{1, \sharp} \gamma=\mu, \pi_{2, \sharp} \gamma=\nu\right\}$ and

$$
\mathcal{E}_{c}(\gamma):=\int c\left(x_{1}, x_{2}\right) d \gamma\left(x_{1}, x_{2}\right)
$$

Solution à la Monge : the transport plan γ is deterministic (or à la Monge) if $\gamma=(I d, T)_{\sharp} \mu$ where $T_{\sharp} \mu=\nu$.

The Multi-Marginal Optimal Transportation

Let us take N probability measures $\mu_{i} \in \mathcal{P}(X)$ with $i=1, \cdots, N$ and $c: X^{N} \rightarrow[0,+\infty]$ a continuous cost function. Then the multi-marginal OT problem reads as:

$$
\begin{equation*}
\left(\mathcal{M} \mathcal{K}_{N}\right) \quad E_{c}\left(\mu_{1}, \cdots, \mu_{N}\right)=\inf \left\{\mathcal{E}_{c}(\gamma) \mid \gamma \in \Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)\right\} \tag{2}
\end{equation*}
$$

where $\Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \cdots, x_{N}\right)$ having μ_{i} as marginals and

$$
\mathcal{E}_{c}(\gamma):=\int c\left(x_{1}, \cdots, x_{N}\right) d \gamma\left(x_{1}, \cdots, x_{N}\right)
$$

Why is it a difficult problem to treat?

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);

The Multi-Marginal Optimal Transportation

Let us take N probability measures $\mu_{i} \in \mathcal{P}(X)$ with $i=1, \cdots, N$ and $c: X^{N} \rightarrow[0,+\infty]$ a continuous cost function. Then the multi-marginal OT problem reads as:

$$
\begin{equation*}
\left(\mathcal{M} \mathcal{K}_{N}\right) \quad E_{c}\left(\mu_{1}, \cdots, \mu_{N}\right)=\inf \left\{\mathcal{E}_{c}(\gamma) \mid \gamma \in \Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)\right\} \tag{2}
\end{equation*}
$$

where $\Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \cdots, x_{N}\right)$ having μ_{i} as marginals and

$$
\mathcal{E}_{c}(\gamma):=\int c\left(x_{1}, \cdots, x_{N}\right) d \gamma\left(x_{1}, \cdots, x_{N}\right)
$$

Solution à la Monge : $\gamma=\left(I d, T_{2}, \ldots, T_{N}\right)_{\sharp} \mu_{1}$ where $T_{i \sharp} \mu_{1}=\mu_{i}$.
Why is it a difficult problem to treat?

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);

The Multi-Marginal Optimal Transportation

Let us take N probability measures $\mu_{i} \in \mathcal{P}(X)$ with $i=1, \cdots, N$ and $c: X^{N} \rightarrow[0,+\infty]$ a continuous cost function. Then the multi-marginal OT problem reads as:

$$
\begin{equation*}
\left(\mathcal{M} \mathcal{K}_{N}\right) \quad E_{c}\left(\mu_{1}, \cdots, \mu_{N}\right)=\inf \left\{\mathcal{E}_{c}(\gamma) \mid \gamma \in \Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)\right\} \tag{2}
\end{equation*}
$$

where $\Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)$ denotes the set of couplings $\gamma\left(x_{1}, \cdots, x_{N}\right)$ having μ_{i} as marginals and

$$
\mathcal{E}_{c}(\gamma):=\int c\left(x_{1}, \cdots, x_{N}\right) d \gamma\left(x_{1}, \cdots, x_{N}\right)
$$

Solution à la Monge : $\gamma=\left(I d, T_{2}, \ldots, T_{N}\right)_{\sharp} \mu_{1}$ where $T_{i \sharp} \mu_{1}=\mu_{i}$.
Why is it a difficult problem to treat?
Example: $N=3, d=1, \mu_{i}=\mathcal{L}_{[0,1]} \forall i$ and $c\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}+x_{2}+x_{3}\right|^{2}$.

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);
- $\exists T_{i}$ optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6

The dual formulation of ($\mathcal{M K}$)

We consider the 2 marginals case for simplicity. The $(\mathcal{M K})$ problem admits a dual formulation:

$$
\begin{equation*}
\sup \{\mathcal{J}(\phi, \psi) \mid(\phi, \psi) \in \mathcal{K}\} \tag{3}
\end{equation*}
$$

where

$$
\mathcal{J}(\phi, \psi):=\int_{X} \phi d \mu(x)+\int_{Y} \psi d \nu(y)
$$

and \mathcal{K} is the set of bounded and continuous functions ϕ, ψ such that $\phi(x)+\psi(y) \leq c(x, y)$.

The dual formulation of ($\mathcal{M K}$)

We consider the 2 marginals case for simplicity. The ($\mathcal{M K}$) problem admits a dual formulation:

$$
\begin{equation*}
\sup \{\mathcal{J}(\phi, \psi) \mid(\phi, \psi) \in \mathcal{K}\} \tag{3}
\end{equation*}
$$

where

$$
\mathcal{J}(\phi, \psi):=\int_{X} \phi d \mu(x)+\int_{Y} \psi d \nu(y)
$$

and \mathcal{K} is the set of bounded and continuous functions ϕ, ψ such that $\phi(x)+\psi(y) \leq c(x, y)$.

Remark

Notice that the constraint on a couple (ϕ, ψ) may be rewritten as

$$
\psi(y) \leq \inf _{x} c(x, y)-\phi(x):=\phi^{c}(y) .
$$

So for an admissible couple (ϕ, ψ) one has $\mathcal{J}\left(\phi, \phi^{c}\right) \geq \mathcal{J}(\phi, \psi)$

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)) economics. The transport plan γ matches individuals from each team minimizing a given cost: In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \cdots, x_{N I}\right)$ returns the probability of

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan γ matches individuals from each team μ_{i} minimizing a given cost;

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan γ matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};

> and L. Nenna 2018)

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan γ matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};
- Incompressible Euler Equations (Yann Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan γ matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};
- Incompressible Euler Equations (Yann Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Variational Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan γ matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan $\gamma\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};
- Incompressible Euler Equations (Yann Brenier 1989) : $\gamma(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Variational Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- etc...

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

- Discrete-2-Discrete: the marginals μ have an atomic form, i.e. $\mu(x)=\sum_{i} \mu_{i} \delta_{x_{i}}$ (and ν as well). Remarks:
- The problem becomes a standard linear programming problem.
- Works for any kind of cost function.
- Can be easily generalized to the multi-marginal case.

The semi-discrete approach (Mérigot 2011).
(Mérigot and Mirebeau 2016)

The Benamou-Brenier formulation for Optimal Transport! (J.-D. Benamou and Y. Brenier 2000)

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

- Discrete-2-Discrete: the marginals μ have an atomic form, i.e. $\mu(x)=\sum_{i} \mu_{i} \delta_{x_{i}}$ (and ν as well). Remarks:
- The problem becomes a standard linear programming problem.
- Works for any kind of cost function.
- Can be easily generalized to the multi-marginal case.
- Continous-2-Discrete: $\mu=\bar{\mu} d x$ and $\nu(y)=\sum_{i} \nu_{i} \delta_{y_{i}}$. Remarks:
- The semi-discrete approach (Mérigot 2011).
- Used for generalized euler equations (kind of mmot problem) à la Brenier (Mérigot and Mirebeau 2016).
- Continous-2-Continous $\mu=\overline{\mu d} \times$ (and ν to $)$. Remarks The Benamou-Brenier formulation for Otimal Transport! (J.-D. Benamou and Y. Brenier 2000)

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

- Discrete-2-Discrete: the marginals μ have an atomic form, i.e. $\mu(x)=\sum_{i} \mu_{i} \delta_{x_{i}}$ (and ν as well). Remarks:
- The problem becomes a standard linear programming problem.
- Works for any kind of cost function.
- Can be easily generalized to the multi-marginal case.
- Continous-2-Discrete: $\mu=\bar{\mu} d x$ and $\nu(y)=\sum_{i} \nu_{i} \delta_{y_{i}}$. Remarks:
- The semi-discrete approach (Mérigot 2011).
- Used for generalized euler equations (kind of mmot problem) à la Brenier (Mérigot and Mirebeau 2016).
- Continous-2-Continous $\mu=\bar{\mu} d x$ (and ν too). Remarks
- The Benamou-Brenier formulation for Optimal Transport! (J.-D. Benamou and Y. Brenier 2000)

The discretized Monge-Kantorovich problem

Let's take $c_{i j}=c\left(x_{i}, y_{j}\right) \in \mathbb{R}^{M \times M}$ (M are the gridpoints used to discretize X) then the discretized $(\mathcal{M K})$, reads as

$$
\begin{equation*}
\min \left\{\sum_{i, j=1}^{M} c_{i j} \gamma_{i j} \mid \sum_{j=1}^{M} \gamma_{i j}=\mu_{i} \forall i, \sum_{i=1}^{M} \gamma_{i j}=\nu_{j} \forall j\right\} \tag{4}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{M} \phi_{i} \mu_{i}+\sum_{j=1}^{M} \psi_{j} \nu_{j} \mid \phi_{i}+\psi_{j} \leq c_{i j} \forall(i, j) \in\{1, \cdots, M\}^{2}\right\} . \tag{5}
\end{equation*}
$$

The discretized Monge-Kantorovich problem

Let's take $c_{i j}=c\left(x_{i}, y_{j}\right) \in \mathbb{R}^{M \times M}$ (M are the gridpoints used to discretize X) then the discretized $(\mathcal{M K})$, reads as

$$
\begin{equation*}
\min \left\{\sum_{i, j=1}^{M} c_{i j} \gamma_{i j} \mid \sum_{j=1}^{M} \gamma_{i j}=\mu_{i} \forall i, \sum_{i=1}^{M} \gamma_{i j}=\nu_{j} \forall j\right\} \tag{4}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{M} \phi_{i} \mu_{i}+\sum_{j=1}^{M} \psi_{j} \nu_{j} \mid \phi_{i}+\psi_{j} \leq c_{i j} \forall(i, j) \in\{1, \cdots, M\}^{2}\right\} \tag{5}
\end{equation*}
$$

Remarks

- The primal has M^{2} unknowns and $M \times 2$ linear constraints.
- The dual has $M \times 2$ unknowns, but M^{2} constraints.

The importance of being sparse

A multi-scale approach to reduce M (J.-D. Benamou, G. Carlier, and L. Nenna 2016)

Figure: Support of the optimal γ for 2 marginals and the Coulomb cost

Some references:
Schmitzer, Bernhard (2019). "Stabilized sparse scaling algorithms for entropy regularized transport problems". In: SIAM J. Sci. Comput. 41.3, A1443-A1481. ISSN: 1064-8275. DOI: 10.1137/16M1106018. URL:
https://mathscinet.ams.org/mathscinet-getitem?mr=3947294.
Mérigot, Quentin (2011). "A multiscale approach to optimal transport". In: Computer Graphics
Forum. Vol. 30. 5. Wiley Online Library, pp. 1583-1592.

The discretized Monge-Kantorovich problem

Let's take $c_{j_{1}}, \ldots, j_{N}=c\left(x_{j_{1}}, \cdots, x_{j_{N}}\right) \in \otimes_{1}^{N} \mathbb{R}^{M}$ (M are the gridpoints used to discretize $\left.\mathbb{R}^{d}\right)$ then the discretized $\left(\mathcal{M} \mathcal{K}_{N}\right)$, reads as

$$
\begin{equation*}
\min \left\{\sum_{\left(j_{\mathbf{1}}, \cdots, j_{N}\right)=1}^{M} c_{j_{1}, \cdots, j_{N}} \gamma_{j_{\mathbf{1}}, \cdots, j_{N}} \mid \sum_{j_{k}, k \neq i} \gamma_{j_{\mathbf{1}}, \cdots, j_{i}, \mathbf{1}, j_{i+1}, \cdots, j_{N}}=\mu_{j_{i}}^{i}\right\} \tag{6}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{N} \sum_{j_{i}=1}^{M} u_{j_{i}}^{i} \mu_{j_{i}}^{i} \quad \mid \quad \sum_{k=1}^{N} u_{j_{k}}^{k} \leq c_{j_{1}}, \ldots, j_{N} \quad \forall\left(j_{1}, \cdots, j_{N}\right) \in\{1, \cdots, M\}^{N}\right\} . \tag{7}
\end{equation*}
$$

The discretized Monge-Kantorovich problem

Let's take $c_{j_{1}}, \ldots, j_{N}=c\left(x_{j_{1}}, \cdots, x_{j_{N}}\right) \in \otimes_{1}^{N} \mathbb{R}^{M}$ (M are the gridpoints used to discretize $\left.\mathbb{R}^{d}\right)$ then the discretized $\left(\mathcal{M} \mathcal{K}_{N}\right)$, reads as

$$
\begin{equation*}
\min \left\{\sum_{\left(j_{\mathbf{1}}, \cdots, j_{N}\right)=1}^{M} c_{j_{1}, \cdots, j_{N}} \gamma_{j_{1}, \cdots, j_{N}} \mid \sum_{j_{k}, k \neq i} \gamma_{j_{\mathbf{1}}, \cdots, j_{i}-\mathbf{1}, j_{i+1}, \cdots, j_{N}}=\mu_{j_{i}}^{i}\right\} \tag{6}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{N} \sum_{j_{i}=1}^{M} u_{j_{i}}^{i} \mu_{j_{i}}^{i} \quad \mid \quad \sum_{k=1}^{N} u_{j_{k}}^{k} \leq c_{j_{1}, \ldots, j_{N}} \quad \forall\left(j_{1}, \cdots, j_{N}\right) \in\{1, \cdots, M\}^{N}\right\} . \tag{7}
\end{equation*}
$$

Drawbacks

- The primal has M^{N} unknowns and $M \times N$ linear constraints.
- The dual has $M \times N$ unknowns, but M^{N} constraints.

Entropic Optimal Transport

The entropic OT problem

We present a numerical method to solve the regularized ((Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Peyré 2015; M. Cuturi 2013; Galichon and Salanié 2009)) optimal transport problem (let us consider, for simplicity, 2 marginals)

$$
\min _{\gamma \in \mathcal{C}} \sum_{i, j} c_{i j} \gamma_{i j}+\left\{\begin{array}{l}
\epsilon \sum_{i j} \gamma_{i j} \log \left(\frac{\gamma_{i j}}{\mu_{i} \nu_{j}}\right) \quad \gamma \geq 0 \tag{8}\\
+\infty \quad \text { otherwise }
\end{array}\right.
$$

where C is the matrix associated to the cost, γ is the discrete transport plan and \mathcal{C} is the intersection between $\mathcal{C}_{1}=\left\{\gamma \mid \sum_{j} \gamma_{i j}=\mu_{i}\right\}$ and $\mathcal{C}_{2}=\left\{\gamma \mid \sum_{i} \gamma_{i j}=\nu_{j}\right\}$.
Remark: Think at ϵ as the temperature, then entropic OT is just OT at positive temperature.

The problem (8) can be re-written as

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{9}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i j} \gamma_{i j}\left(\log \frac{\gamma_{i j}}{\bar{\gamma}_{i j}}\right)(=\operatorname{KL}(\gamma \mid \bar{\gamma})$ aka the Kullback-Leibler divergence) and $\bar{\gamma}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.

Unique and semi-explicit solution (we will see it in 2/3 minutes!)

The problem (8) can be re-written as

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{9}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i j} \gamma_{i j}\left(\log \frac{\gamma_{i j}}{\bar{\gamma}_{i j}}\right)(=\operatorname{KL}(\gamma \mid \bar{\gamma})$ aka the Kullback-Leibler divergence) and $\bar{\gamma}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.

Remarks:

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)
- Problem (9) dates back to Schrödinger, (see Christian Léonard's web page).

The problem (8) can be re-written as

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{9}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i j} \gamma_{i j}\left(\log \frac{\gamma_{i j}}{\bar{\gamma}_{i j}}\right)(=\operatorname{KL}(\gamma \mid \bar{\gamma})$ aka the Kulllback-Leibler divergence) and $\bar{\gamma}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.

Remarks:

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)
- Problem (9) dates back to Schrödinger, (see Christian Léonard's web page).
- $\mathcal{H} \rightarrow \mathcal{M K}$ as $\epsilon \rightarrow 0$. (see (Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017; Léonard 2012)).

The problem (8) can be re-written as

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{9}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i j} \gamma_{i j}\left(\log \frac{\gamma_{i j}}{\bar{\gamma}_{i j}}\right)(=\operatorname{KL}(\gamma \mid \bar{\gamma})$ aka the Kullback-Leibler
divergence) and $\bar{\gamma}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.
Remarks:

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)
- Problem (9) dates back to Schrödinger, (see Christian Léonard's web page).
- $\mathcal{H} \rightarrow \mathcal{M K}$ as $\epsilon \rightarrow 0$. (see (Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017; Léonard 2012)).
- The dual problem is an unconstrained optimization problem.

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

Figure: G. Peyre's twitter account

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

$\varepsilon=.05$
Figure: G. Peyre's twitter account

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

$$
\varepsilon=0.2
$$

Figure: G. Peyre's twitter account

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

Figure: G. Peyre's twitter account

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan γ^{\star} has the form $\gamma_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \bar{\gamma}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \bar{\gamma}_{i j}}
$$

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan γ^{\star} has the form $\gamma_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \bar{\gamma}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \bar{\gamma}_{i j}}
$$

The Sinkhorn algorithm (aka IPFP)

$$
b_{j}^{n+1}=\frac{\nu_{j}}{\sum_{i} a_{i}^{n} \bar{\gamma}_{i j}}, a_{i}^{n+1}=\frac{\mu_{i}}{\sum_{j} b_{j}^{n+1} \bar{\gamma}_{i j}}
$$

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan γ^{\star} has the form $\gamma_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \bar{\gamma}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \bar{\gamma}_{i j}}
$$

The Sinkhorn algorithm (aka IPFP)

$$
b_{j}^{n+1}=\frac{\nu_{j}}{\sum_{i} a_{i}^{n} \bar{\gamma}_{i j}}, a_{i}^{n+1}=\frac{\mu_{i}}{\sum_{j} b_{j}^{n+1} \bar{\gamma}_{i j}}
$$

Theorem ((ibid.))

a^{n} and b^{n} converge to a^{\star} and b^{\star}
Remark: $\phi_{i}=\epsilon \log \left(a_{i}\right)$ and $\psi_{j}=\epsilon \log \left(b_{j}\right)$ are the (regularized) Kantorovich
potentials.

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan γ^{\star} has the form $\gamma_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \bar{\gamma}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \bar{\gamma}_{i j}}
$$

The Sinkhorn algorithm (aka IPFP)

$$
b_{j}^{n+1}=\frac{\nu_{j}}{\sum_{i} a_{i}^{n} \bar{\gamma}_{i j}}, a_{i}^{n+1}=\frac{\mu_{i}}{\sum_{j} b_{j}^{n+1} \bar{\gamma}_{i j}}
$$

Theorem ((ibid.))

a^{n} and b^{n} converge to a^{\star} and b^{\star}
Remark: $\phi_{i}=\epsilon \log \left(a_{i}\right)$ and $\psi_{j}=\epsilon \log \left(b_{j}\right)$ are the (regularized) Kantorovich potentials.

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
- The solution can be obtained through elementary operations (trivially parallelizable).

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
- The solution can be obtained through elementary operations (trivially parallelizable).
- The regularized solution γ^{ϵ} converges to the solution $\gamma^{o t}$ of $\mathcal{M K} \mathrm{pb}$. with minimal entropy as $\epsilon \rightarrow 0$ (in (Cominetti and San Martin 1994) the authors proved that the convergence is exponential).

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
- The solution can be obtained through elementary operations (trivially parallelizable).
- The regularized solution γ^{ϵ} converges to the solution $\gamma^{o t}$ of $\mathcal{M K} \mathrm{pb}$. with minimal entropy as $\epsilon \rightarrow 0$ (in (Cominetti and San Martin 1994) the authors proved that the convergence is exponential).
- The complexity depends on the cost function: with Euler's cost $\mathcal{O}\left((N-1) M^{2.37}\right) \ldots$..still exponential in N for the Coulomb cost :(.

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=60 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=40 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=20 / N$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=10 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=6 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=4 / \mathrm{N}$

The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{10}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i, j, k} \gamma_{i j k}\left(\log \frac{\gamma_{i j k}}{\bar{\gamma}_{i j k}}-1\right)$ is the relative entropy, and $\mathcal{C}=\bigcap_{i=1}^{3} \mathcal{C}_{i}$ (i.e. $\mathcal{C}_{1}=\left\{\gamma|\quad| \quad \sum_{j, k} \gamma_{i j k}=\mu_{i}^{1}\right\}$).

The optimal plan γ^{\star} becomes $\gamma_{i j k}^{\star}=a_{i}^{\star} b_{j}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k} a_{i}^{\star}, b_{j}^{\star}$ and c_{k}^{\star} can be determined by the marginal constraints.

$$
\begin{aligned}
b_{j}^{\star} & =\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k}} \\
c_{k}^{\star} & =\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j k}} \\
a_{i}^{\star} & =\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k}}
\end{aligned}
$$

The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{10}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i, j, k} \gamma_{i j k}\left(\log \frac{\gamma_{i j k}}{\bar{\gamma}_{i j k}}-1\right)$ is the relative entropy, and $\mathcal{C}=\bigcap_{i=1}^{3} \mathcal{C}_{i}$ (i.e. $\mathcal{C}_{1}=\left\{\gamma \mid \quad \sum_{j, k} \gamma_{i j k}=\mu_{i}^{1}\right\}$).

The optimal plan γ^{\star} becomes $\gamma_{i j k}^{\star}=a_{i}^{\star} b_{j}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k} a_{i}^{\star}, b_{j}^{\star}$ and c_{k}^{\star} can be determined by the marginal constraints.

$$
\begin{array}{ll}
b_{j}^{\star}=\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k}} & \Rightarrow \\
c_{k}^{\star}=\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j k}} & \Rightarrow \\
a_{i}^{\star}=\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k}} & \Rightarrow \\
\Rightarrow \\
\hline
\end{array}
$$

The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

$$
\begin{equation*}
\min _{\gamma \in \mathcal{C}} \mathcal{H}(\gamma \mid \bar{\gamma}) \tag{10}
\end{equation*}
$$

where $\mathcal{H}(\gamma \mid \bar{\gamma})=\sum_{i, j, k} \gamma_{i j k}\left(\log \frac{\gamma_{i j k}}{\bar{\gamma}_{i j k}}-1\right)$ is the relative entropy, and $\mathcal{C}=\bigcap_{i=1}^{3} \mathcal{C}_{i}$ (i.e. $\mathcal{C}_{1}=\left\{\gamma|\quad| \quad \sum_{j, k} \gamma_{i j k}=\mu_{i}^{1}\right\}$).

The optimal plan γ^{\star} becomes $\gamma_{i j k}^{\star}=a_{i}^{\star} b_{j}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k} a_{i}^{\star}, b_{j}^{\star}$ and c_{k}^{\star} can be determined by the marginal constraints.

$$
\begin{aligned}
b_{j}^{\star} & =\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k}} \\
c_{k}^{\star} & =\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{\star} b_{j}^{\star} \bar{\gamma}_{i j k}} \\
a_{i}^{\star} & =\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{\star} c_{k}^{\star} \bar{\gamma}_{i j k}}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & b_{j}^{n+1}=\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{n} c_{k}^{n} \bar{\gamma}_{i j k}} \\
\Rightarrow & \Rightarrow
\end{array}
$$

$$
\Rightarrow
$$

$$
c_{k}^{n+1}=\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{n} b_{j}^{n+1} \bar{\gamma}_{i j k}}
$$

$$
a_{i}^{n+1}=\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{n+1} c_{k}^{n+1} \bar{\gamma}_{i j k u n}}
$$

Sinkhornizing the world!!

- Wasserstein Barycenter (Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Peyré 2015);
- Matching for teams (Luca Nenna 2016);
- Optimal transport with capacity constraint (Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Peyré 2015);
- Partial Optimal Transport (Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard 2016);
- Multi-Marginal Optimal Transport (Luca Nenna 2016; J.-D. Benamou, G. Carlier, and L. Nenna 2016; Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018; Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Peyré 2015);
- Wasserstein Gradient Flows (JKO) (Peyré 2015);
- Unbalanced Optimal Transport (Chizat, Peyré, B. Schmitzer, and Vialard 2016);
- Cournot-Nash equilibria (Blanchet, Guillaume Carlier, and Luca Nenna 2017)
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- And more is coming...

Application I: MMOT for computing geodesics in the Wasserstein space

The three formulations of quadratic Optimal Transport

Three formulations of Optimal Transport problem) with the quadratic cost :

- The static

$$
\inf \left\{\left.\int_{X \times X} \frac{1}{2}|x-y|^{2} d \gamma \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}
$$

- The dynamic (Lagrangian) $\left(C=H^{1}([0,1] ; X)\right.$ and $\left.e_{t}:[0,1] \rightarrow X\right)$

$$
\inf \left\{\left.\int_{C} \int_{0}^{1} \frac{1}{2}|\dot{\omega}|^{2} d t d Q(\omega) \right\rvert\, Q \in \mathcal{P}(C),\left(e_{0}\right)_{\sharp} Q=\mu,\left(e_{1}\right)_{\sharp} Q=\nu\right\}
$$

- The dynamic (Eulerian), aka the Benamou-Brenier formulation

$$
\begin{array}{r}
\inf \int_{0}^{1} \int_{X} \frac{1}{2}\left|v_{t}\right|^{2} \rho_{t} d x d t \quad \text { s.t. } \partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}
$$

Some remarks and a MMOT formulation

Remarks:

- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp} \gamma=\left(e_{t}\right)_{\sharp} Q=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$.

- if we discretise in time (let take $T+1$ time steps) the Lagrangian formulation and imposing that $\omega\left(t_{i}\right)=x_{i}\left(t_{i}=i \frac{1}{T}\right.$ for $\left.i=0, \cdots, T\right)$ we get the following discrete (in time) MMOT problem

$$
\begin{aligned}
& \inf \int_{X^{T}} \frac{1}{2 T} \sum_{i=0}^{T}\left|x_{i+1}-x_{i}\right|^{2} d \gamma\left(x_{0}, \cdots, x_{T}\right) \text { s.t } \\
& \quad \gamma \in \mathcal{P}\left(X^{T+1}\right), \pi_{0, \sharp} \gamma=\mu, \pi_{T, \sharp} \gamma=\nu
\end{aligned}
$$

The geodesic in 2D

Figure: $t=0$

The geodesic in 2D

Figure: $t=\frac{1}{14}$

The geodesic in 2D

Figure: $t=\frac{2}{14}$

The geodesic in 2D

Figure: $t=\frac{3}{14}$

The geodesic in 2D

Figure: $t=\frac{4}{14}$

The geodesic in 2D

Figure: $t=\frac{5}{14}$

The geodesic in 2D

Figure: $t=\frac{6}{14}$

The geodesic in 2D

Figure: $t=\frac{7}{14}$

The geodesic in 2D

Figure: $t=\frac{8}{14}$

The geodesic in 2D

Figure: $t=\frac{9}{14}$

The geodesic in 2D

Figure: $t=\frac{10}{14}$

The geodesic in 2D

Figure: $t=\frac{11}{14}$

The geodesic in 2D

Figure: $t=\frac{12}{14}$

The geodesic in 2D

Figure: $t=\frac{13}{14}$

The geodesic in 2D

Figure: $t=1$

The geodesic between images

Figure: $t=0$

The geodesic between images

Figure: $t=\frac{1}{14}$

The geodesic between images

Figure: $t=\frac{2}{14}$

The geodesic between images

Figure: $t=\frac{3}{14}$

The geodesic between images

Figure: $t=\frac{4}{14}$

The geodesic between images

Figure: $t=\frac{5}{14}$

The geodesic between images

Figure: $t=\frac{6}{14}$

The geodesic between images

Figure: $t=\frac{7}{14}$

The geodesic between images

Figure: $t=\frac{8}{14}$

The geodesic between images

Figure: $t=\frac{9}{14}$

The geodesic between images

Figure: $t=\frac{10}{14}$

The geodesic between images

Figure: $t=\frac{11}{14}$

The geodesic between images

Figure: $t=\frac{12}{14}$

The geodesic between images

Figure: $t=\frac{13}{14}$

The geodesic between images

Figure: $t=1$

Application II: MMOT and variational Mean Field Games

Lagrangian formulation for 1st order MFG

Consider a first order MFG system then we have the following "equivalence" (see (Lasry and Lions 2007))

MFG system	(Eulerian) Variational Formulation
$\partial_{t} \rho-\operatorname{div}(\rho \nabla \phi)=0$	$\inf \int_{0}^{1} \int_{\Omega}\left(\frac{1}{2}\left\|v_{t}\right\|^{2} \rho_{t} d x d t+G\left(x, \rho_{t}\right)\right)+F\left(\rho_{1}\right)$
$\rho(0, \cdot)=\rho_{0}$	$\text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0, \rho(0, \cdot)=\rho_{0}$ (Lagrangian) Formulation
$-\partial_{t} \phi+\frac{1}{2}\|\nabla \phi\|^{2}=g(x, \rho)$	(J.-D. Benamou, G. Carlier, and Santambrogio 2017)
$\phi(1, \cdot)=\Psi$	$\min \int_{C} K(\omega) d Q(\omega)+\int_{0}^{1} \int_{\Omega} G\left(x, e_{t, \sharp} Q\right) d x d t+F\left(e_{1, \sharp} Q\right)$
	s.t. $e_{0, \sharp} Q=\rho_{0}$.

where G is the anti-derivative of g w.r.t its second variable, $C=H^{1}([0,1] ; \Omega)$, $F\left(\rho_{1}\right)=\int_{\Omega} \Psi d \rho_{1}$ is a final cost and $K(\omega) \stackrel{\text { def }}{=} \frac{1}{2} \int_{0}^{1}|\dot{\omega}|^{2} d t$

A Lagrangian formulation via Entropy minimization

What about a second order MFG system?

MFG system	(Eulerian) Variational Formulation
$\partial_{t} \rho-\operatorname{div}(\rho \nabla \phi)-\frac{\epsilon}{2} \Delta \rho=0$	(Cardaliaguet, Graber, Porretta, and Tonon 2015)
$\rho(0, \cdot)=\rho_{0}$	$\inf \int_{0}^{1} \int_{\Omega}\left(\frac{1}{2}\left\|v_{t}\right\|^{2} \rho_{t} d x d t+G\left(x, \rho_{t}\right)\right)+F\left(\rho_{1}\right)$
	s.t. $\partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)-\frac{\epsilon}{2} \Delta \rho=0, \rho(0, \cdot)=\rho_{0}$,
(Lagrangian) Formulation	
$-\partial_{t} \phi+\frac{1}{2}\|\nabla \phi\|^{2}-\frac{\epsilon}{2} \Delta \phi=g(x, \rho)$	(J.-D. Benamou, G. Carlier, s. Di Marino, and L. Nenna 2018) $\phi(1, \cdot)=\psi$
	$\min \mathcal{H}\left(Q \mid R^{\epsilon}\right)+\int_{0}^{1} \int_{\Omega} G\left(x, e_{t, \sharp} Q\right) d x d t+F\left(e_{1, \sharp} Q\right)$,
	s.t. $e_{0, \sharp} Q=\rho_{0}$.

where $\mathcal{H}(q \mid r)=\int \log \left(\frac{d q}{d r}\right) d q$ is the relative entropy $(q \ll r)$ and R^{ϵ} is the Wiener measure $R^{\epsilon}:=\int \delta_{x+B^{e}} d x$ of variance ϵ.

The discretised (in time) problems

The discrete Lagrangian formulations read

- 1st order MFG
$\inf \left\{\int_{\Omega^{T+1}} K_{T} d Q_{T}\left(x_{0}, \cdots, x_{T}\right)+\sum_{i=1}^{T-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{T}\right) d x_{i}+F\left(\pi_{T, \sharp} Q_{T}\right) \mid \pi_{0, \sharp} Q_{T}=\rho_{0}\right\}$,
where $K_{T}=\frac{1}{2 T} \sum_{i=0}^{T-1}\left|x_{i+1}-x_{i}\right|^{2}, Q_{T} \in \mathcal{P}\left(\Omega^{T+1}\right)$.
where $R_{T} \stackrel{\text { def }}{=} \prod_{n=0}^{T} \xi_{n, n+1}$ and $\xi_{i j}=\exp$

The discretised (in time) problems

The discrete Lagrangian formulations read

- 1st order MFG
$\inf \left\{\int_{\Omega^{T+1}} K_{T} d Q_{T}\left(x_{0}, \cdots, x_{T}\right)+\sum_{i=1}^{T-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{T}\right) d x_{i}+F\left(\pi_{T, \sharp} Q_{T}\right) \mid \pi_{0, \sharp} Q_{T}=\rho_{0}\right\}$,
where $K_{T}=\frac{1}{2 T} \sum_{i=0}^{T-1}\left|x_{i+1}-x_{i}\right|^{2}, Q_{T} \in \mathcal{P}\left(\Omega^{T+1}\right)$.
- 2nd order MFG

$$
\inf \left\{\mathcal{H}\left(Q_{T} \mid R_{T}^{\epsilon}\right)+\sum_{i=1}^{T-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{T}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{T}\right) \mid \pi_{0, \sharp} Q_{T}=\rho_{0}\right\}
$$

where $R_{T}^{\epsilon} \stackrel{\text { def }}{=} \prod_{n=0}^{T} \xi_{n, n+1}$ and $\xi_{i j}=\exp -\frac{\left|x_{i}-x_{j}\right|^{2}}{2 T \epsilon}$.

IDEA: a generalised Sinkhorn to compute the solution of both problems

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=1$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

Hard congestion with obstacle, behaviour as $\epsilon \rightarrow 0$

$T=32$ time steps; grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$

$\epsilon=0.01$

$\epsilon=0.001$

References

Benamou, J.-D., G. Carlier, \& L. Nenna (2016). "A Numerical Method to solve Multi-Marginal Optimal Transport Problems with Coulomb Cost". In: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing, pp. 577-601.
Benamou, Jean-David, Guillaume Carlier, Marco Cuturi, Luca Nenna, \& Gabriel Peyré (2015). "Iterative Bregman projections for regularized transportation problems". In: SIAM J. Sci. Comput. 37.2, A1111-A1138. ISSN: 1064-8275. DOI: 10.1137/141000439. URL: http://dx.doi.org/10.1137/141000439.
Nenna, Luca (2016). "Numerical methods for multi-marginal optimal transportation". PhD thesis. PSL Research University.
Peyré, Gabriel \& Marco Cuturi (2017). Computational optimal transport. Tech. rep.
Chizat, L., G. Peyré, B. Schmitzer, \& F.-X. Vialard (2016). Scaling Algorithms for Unbalanced Transport Problems. Tech. rep. http://arxiv.org/abs/1607.05816.
Léonard, C. (2012). "From the Schrödinger problem to the Monge-Kantorovich problem". In: Journal of Functional Analysis 262.4, pp. 1879-1920.
Mérigot, Quentin (2011). "A multiscale approach to optimal transport". In: Computer Graphics Forum. Vol. 30. 5. Wiley Online Library, pp. 1583-1592.
Cuturi, M. (2013). "Sinkhorn Distances: Lightspeed Computation of Optimal Transport.". In: Advances in Neural Information Processing Systems (NIPS) 26, pp. 2292-2300.
Galichon, A. \& B. Salanié (2009). Matching with Trade-offs: Revealed Preferences over Competing Characteristics. Tech. rep. Preprint SSRN-1487307.

