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1 Generalized geodesics and Optimal Transport

1.1 Generalized geodesics

Although we could consider the general framework of a Riemannian manifold,
we only address the case of a subset D of the Euclidean space Rd, and we
assume D to be the closure of a convex open bounded set. Given two points
X0 and X1 in D, the geodesic curve

X(s) = (1− s)X0 + sX1 (1)

achieves

inf
X

∫ 1

0
k(X ′(s))ds, (2)

for all continuous convex even function k on Rd, in particular for the ’quadratic
cost’ k(v) = |v|2/2, among all smooth paths s ∈ [0, 1]→ X(s) ∈ D such that
X(1) = X1, X(0) = X0. This immediately follows from Jensen’s inequality.
In the spirit of Young’s generalized functions [Yo], [Ta], let us now asso-
ciate to each admissible path X the following pair of (Borel) measures (ρ,m)
defined on the compact set [0, 1]×D by

ρ(s, x) = δ(x−X(s)), m(s, x) = X ′(s)δ(x−X(s)), (s, x) ∈ [0, 1]×D. (3)

They satisfy the following compatibility condition in the sense of distributions

∂sρ+∇ ·m = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1, (4)

where
ρ0(x) = δ(x−X0), ρ1(x) = δ(x−X1). (5)
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Indeed, we have

−
∫
D

∫ 1

0
(∂sφ(s, x)dρ(s, x) +∇φ(s, x) · dm(s, x)) (6)

+
∫
D

(φ(1, x)dρ1(x)− φ(0, x)dρ0(x)) = 0,

for all smooth functions φ(s, x) defined on [0, 1]×Rd. (This also implies, in
a weak sense, that m is parallel to the boundary ∂D.) We notice that m is
absolutely continuous with respect to ρ and, by Jensen’s inequality,∫ 1

0
k(X ′(s))ds (7)

is bounded from below by

K(ρ,m) =
∫
k(v)dρ, (8)

where v(s, x) is the Radon-Nikodym derivative of E with respect to ρ. A
more precise definition of K can be given in terms of the Legendre-Fenchel
transform of k denoted by k∗ and defined by

k∗(y) = sup
x∈Rd

x · y − k(x), (9)

where · denotes the inner product in Rd. We assume k∗ to be continuous on
Rd. Typically

k(x) =
|x|p

p
, k∗(y) =

|y|q

q
,

1

p
+

1

q
= 1, 1 < p, q < +∞,

where | · | denotes the Euclidean norm in Rd. We have

K(ρ,m) = sup
α,β

∫
D

∫ 1

0
α(s, x)dρ(s, x) + β(s, x) · dm(s, x), (10)

where the supremum is performed over all pair (α, β) of respectively real and
vector valued continuous defined on [0, 1]×D subject to satisfy

α(s, x) + k∗(β(s, x)) ≤ 0 (11)

pointwise. (Indeed, it can be easily checked that, with this definition, K(ρ,m)
is infinite unless i) ρ is nonnegative, ii) m absolutely continuous with respect
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to ρ and has a Radon-Nikodym density v, ii) K(ρ,m) is just the ρ integral
of k(v).) Notice that K is a convex functional, valued in [0,+∞].

It is now natural to consider the infimum, denoted by inf K, of functional
K defined by (10) among all pairs (ρ,m) that satisfy compatibility conditions
(4), with data (5), and not only among those which are of form (3). This
new minimization problem is convex (as the original one). Since the class of
admissible solutions has been enlarged, the following upper bound follows

inf K ≤ k(X1 −X0) (12)

(by using (1) and (3) as an admissible pair). It turns out that there is no
gap between the original infimum and the relaxed one.

Theorem 1.1 The infimum of functional K, defined by (10), among all pair
(ρ,m)(s, x) of measures on [0, 1]×D, satisfying (4), with boundary conditions

ρ(0, x) = δ(x−X0), ρ(1, x) = δ(x−X1), (13)

is achieved by the one associated, through (3), to the straight path between
the end points X(s) = (1− s)X0 + sX1.

Proof

The proof is obtained through the following simple, and typical, duality
argument that will be used several times subsequently in these lecture notes.
First, we use (6) to relax constraint (4) and write

inf K = inf
ρ,m

sup
α,β,φ

∫
D

∫ 1

0
(α(s, x)− ∂sφ(s, x))dρ(s, x) (14)

+(β(s, x)−∇φ(s, x)) · dm(s, x) +
∫
D

(φ(1, x)dρ1(x)− φ(0, x)dρ0(x)),

where (α, β) are subject to (11), and φ should be considered as a Lagrange
multiplier for condition (4).

The formal optimality conditions for (α, β, φ) are

α = ∂sφ, β = ∇φ, α + k∗(β) = 0, (15)

which leads to the Hamilton-Jacobi equation

∂sφ+ k∗(∇φ) = 0. (16)
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Thus, a good guess for (α, β, φ) is

φ(s, x) = x · y − sk∗(y), α = ∂sφ, β = ∇φ, (17)

where y ∈ Rd will be chosen later. From definition (14), we deduce, with
such a guess,

inf K ≥ φ(1, X1)− φ(0, X0) = (X1 −X0) · y − k∗(y),

for all y ∈ Rd. Optimizing in y and using that

k(x) = sup
y∈Rd

x · y − k∗(y),

we get
inf K ≥ k(X1 −X0),

i.e. the reverse inequality of (12), which concludes the proof.

1.2 Extension to probability measures

The main advantage of the concept of generalized geodesics (ρ,m) as mini-
mizers of K(ρ,m) subject to (4) is that (ρ,m) can achieve boundary data

ρ(s = 0, ·) = ρ0, ρ(s = 1, ·) = ρ1, (18)

that are (Borel) probability measures defined on the subset D. Probability
measures should be seen in this context, as generalized (or fuzzy) points.

Theorem 1.2 Let (ρ0, ρ1) a pair of probability measures on D. Then inf K
is always finite and does not differ from the Monge-Kantorovich generalized
distance between ρ0 and ρ1 usually defined by

Ik(ρ0, ρ1) =: inf
∫
D2
k(x− y)dµ(x, y), (19)

where the infimum is performed on all nonnegative measures µ on D × D
with projections ρ0 and ρ1 on each copy of D.

This alternative ’Eulerian’ formulation of the OT problem has been es-
tablished (in the special and most important case k(v) = |v|2/2) in [BB]
essentially for numerical purposes and inspired by Fluid Mechanics. It has
been used since for a lot of different purposes (including the theory of gradi-
ent flows as in [AGS]) and generalized in many different directions (OT on
graphs, quantum OT, Boltzmann equations, matrix-valued OT, etc...).
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Proof

The proof requires the following well-known result of OT theory, known as
Kantorovich duality [RR, Sa, Vi] :

Ik(ρ0, ρ1) = sup
∫
D

(φ1(x)dρ1(x)− φ0(x)dρ0(x)), (20)

where φ1 and φ0 are continuous functions on D subject to

φ1(y) ≤ k(x− y) + φ0(x), ∀x, y ∈ D. (21)

From definition (19), there is always a minimizer µ, so that∫
D2
k(b− a)dµ(a, b) = Ik(ρ0, ρ1).

Let us introduce, for this µ,

ρ(s, x) =
∫
D2
δ(x−X(s, a, b))dµ(a, b), (22)

m(s, x) =
∫
D2
∂sX(s, a, b)δ(x−X(s, a, b))dµ(a, b), (23)

where

X(s, a, b) = (1− s)a+ sb. (24)

Just as in the proof of Theorem 1.1, compatibility condition (4) is satisfied
and, by Jensen’s inequality,∫

D2
k(b− a)dµ(a, b) ≥ K(ρ,m) (25)

≥ inf K ≥ sup
φ

∫
D

(φ(1, x)dρ1(x)− φ(0, x)dρ0(x)),

where

∂sφ+ k∗(∇φ) ≤ 0. (26)

So we can choose φ to be a solution of the Hamilton-Jacobi equation (16) on
D. Using the Hopf formula to solve (16) (see [Ba], [Li]), we get

φ(s, x) = inf
y∈D

(φ(0, x+ s(y − x)) + sk(y − x)),
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for all s ≥ 0. Thus, from (25), we finally get

Ik(ρ0, ρ1) =
∫
D2
k(b−a)dµ(a, b) ≥ inf K ≥ sup

φ

∫
D

(φ(1, x)dρ1(x)−φ(0, x)dρ0(x)),

where
φ(1, x) = inf

y∈D
(φ(0, y) + k(y − x)).

Thus, we conclude, using Kantorovich duality (20), that there is no difference
between Ik(ρ0, ρ1) and inf K, which concludes the proof.

Remark

Strictly speaking, this proof is not complete. Indeed the Hopf formula does
not provide, in general, a C1 function but only a locally Lipschitz one (which
means that the partial derivatives on φ, in the sense of distributions, are
just locally L∞ functions with respect to the Lebesgue measure). To com-
plete the proof, a regularization argument is convenient: from the Hopf so-
lution φ, we can get by convolution a C1 approximation φε which satisfies
the Hamilton-Jacobi convex inequality ∂sφε + k∗(∇φε) ≤ 0 and does not
affect too much the value

∫
D(φ(1, x)dρ1(x)− φ(0, x)dρ0(x)). We leave to the

reader the technical details (which require some careful truncations before
performing convolutions, due to the boundedness of the domain [0, 1]×D).

1.3 A decomposition result

From the proof of Theorem 1.2, we immediately get the following decomposition
result that asserts that generalized geodesics are mixtures of classical geodesics.

Theorem 1.3 Each pair (ρ0, ρ1) of (Borel) probability measures on D admits
a generalized geodesic (ρ, E) linking them with the following structure

ρ(s, x) =
∫
D2
δ(x−X(s, a, b))dµ(a, b), (27)

E(s, x) =
∫
D2
∂sX(s, a, b)δ(x−X(s, a, b))dµ(a, b), (28)

where X(·, a, b) is the shortest path between a and b in D

X(s, a, b) = (1− s)a+ sb, (29)

and µ is a probability measure on D2 with projections ρ0 and ρ1 on each copy
of D.
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1.4 Duality theory

Our proof has established that there is no gap between the ’inf-sup’ and
the ’sup-inf’. However this result has been indirectly obtained through the
Monge-Kantorovich approach to the OT problem. Therefore, it is useful to
establish directly the duality result without relying on the MK theory. This
can be easily done thanks to the Fenchel-Rockafellar duality theorem, which
can be used in many problems of convex optimization. For simplicity, we
limit ourself to the quadratic cost k(v) = |v|2/2.

The Fenchel-Rockafellar duality theorem

Theorem 1.4 Let E be a real Banach space and consider two functions
K1, K2 : E → R ∪ {+∞} which are both convex. Assume that there exists a
point u0 ∈ E such that both K1 and K2 are finite at u0 while K2 is continuous
at u0. Then we have the duality equality

sup
u∈E

(−K1(u)−K2(u)) = inf
f∈E′

(K∗1(−f) +K∗2(f)) ,

where E ′ is the dual of E and the Legendre-Fenchel dual K∗ : E ′ → R∪{+∞}
of a function K : E → R ∪ {+∞} is defined by

K∗(f) = sup
u∈E

[〈f, u〉E′,E −K(u)] .

Moreover, the infimum in the duality equality is achieved by some point f ∈
E ′.

Remark.
Surprisingly enough, this duality theorem (for which a proof is given in [Brz])
is quite similar to the Plancherel formula in harmonic analysis. Indeed, at
least formally, one can consider the correspondence between the algebraic
structures with operations, respectively, [+, ·] and [max,+] (sometimes in
this correspondence, inequalities can show up instead of equalities). Then,
the Legendre-Fenchel transform is analogous to the Fourier transform and
the duality equality just corresponds to the Plancherel formula:∫

u · v =
∫
û · v̂,

where u → û stands for the Fourier transform. This ”Fenchel-Fourier” dic-
tionary is now well established in Mathematics (”Tropical Geometry” in Al-
gebraic Geometry being one of the best known examples).
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Application of the Fenchel-Rockafellar theorem

We introduce
E = C0([0, 1]×D;R× Rd),

which is a Banach space for the sup norm, and define two convex functions
K1 and K1 on E, valued in ]0,+∞], as follows. We first set

K1(A,B) = −
∫
D2
φ(1, x)dρ1(x)− φ(0, x)dρ0(x),

whenever there are φ ∈ C1([0, 1]×D) such that

A(t, x) = ∂tφ(t, x), B(t, x) = ∇φ(t, x),

and K1(A,B) = +∞ otherwise. Then, we define

K2(A,B) = 0, if A(t, x) +
|B(t, x)|2

2
≤ 0, ∀(t, x) ∈ [0, 1]×D.

and K2(A,B) = +∞ otherwise.
Notice that the first definition is consistent, in the sense that if A,B

are represented as above by two different φ, then the value of K1(A,B) is
unchanged.

Lemma 1.5 The functionals K1, K2 : E → R∪ {+∞} verify the hypotheses
of Theorem 1.4.

Proof

The convexity condition is clear. Next, we have to find a function u0 in
E having the required properties in the Fenchel-Rockafellar Theorem. We
observe here that there is no chance that K1 is continuous (for the C0-norm)
because arbitrarily near any function where K1 < +∞ there is some function
with K1 = +∞. On the other side, in the point (A0, B0) = (−1, 0) we have
A0 = ∂tφ0, B0 = ∇φ0 for φ0 = −t, so K1 is finite at this point. On the other
side, K2(A0, B0) = 0 and this condition is preserved for small perturbations
of (A0, B0) in the C0-norm. Therefore the assumptions of Theorem 1.4 are
satisfied, which completes the proof.

We now want to exploit Theorem 1.4 in our setting. We start by noticing
that

K∗2(ρ,m) = K(ρ,m),
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where K is nothing but the functional introduced at the beginning of this
chapter. Let us now compute K∗1(−ρ,−m). By definition,

K∗1(−ρ,−m) = sup
φ,p

∫
t,x
−∂tφ(t, x)c(t, x, a)−∇φ(t, x) ·m(t, x)

+
∫
x
φ(1, x)dρ1(x, a)− φ(0, x)dρ0(x, a).

This exactly means that K∗1(−ρ,−m) takes value ∞ unless

∂tρ+∇ ·m = 0, ρ(0, x) = ρ0(x, a), ρ(1, x) = ρ1(x),

in which case K∗1(−ρ,−m) = 0. So, we conclude that

sup
ρ,m

K∗1(−ρ,−m) +K∗2(ρ,m) = Kopt(ρ0, ρ1)

which corresponds to the inf-sup problem while

sup
A,B
−K1(A,B)−K2(A,B)

is (almost by definition) just the value of the sup-inf problem that we have
computed earlier. So the inf-sup and the sup-inf have the same optimal value
and we can state:

Theorem 1.6 The Eulerian OT problem can be successively written in primal
(sup) and dual (inf) form:

sup
φ

∫
D
φ(1, x)dρ1(x)− φ(0, x)dρ0(x),

subject to

∂tφ(t, x) +
|∇φ(t, x)|2

2
≤ 0, ∀(t, x) ∈ [0, 1]×D

and

inf
ρ,m

K(ρ,m), K(ρ,m) =
1

2

∫
t,x
|v(t, x)|2ρ(t, x), m = ρv,

subject to

∂tρ+∇ ·m = 0, ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x),

(m being parallel to the boundary ∂D) and there is at least an optimal solution
(ρ,m) to the second one.
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2 Incompressible OT

As seen earlier, the OT on a subset D of Rd (still assumed to be the closure
of a bounded convex open set), is just a theory of generalized geodesics,
or, equivalently, following Otto’s point of view [Ot2], a theory of geodesics
on the “manifold” P rob(D) of all probability measures on D. It is therefore
natural to extend this idea to more complex (convex) “manifolds”. The most
interesting case, in our opinion, is the the set DS(D) of all doubly stochastic
probability measures on D, namely the set of all Borel measures µ on D×D
having as projection on each copy of D the (normalized) Lebesgue measure
on D, which means∫

D×D
f(x)dµ(x, y) =

∫
D×D

f(y)dµ(x, y) =
∫
D
f(x)dx,

for all continuous functions f on D. As d > 1, this compact convex set
turns out to be just the weak closure of the group of orientation and volume
preserving diffeomorphisms of D, usually denoted by SDiff(D) [AK], [Ne],
through the following embedding

g ∈ SDiff(D)→ µg ∈ DS(D), µg(x, y) = δ(y − g(x)).

This group is of particular importance because it is the configuration space
of incompressible fluids. SDiff(D) is naturally embedded in the space
L2(D,Rd) of all square Lebesgue integrable maps from D to Rd. Therefore,
SDiff(D) inherits the L2 metric. Then, as pointed out by Arnold [AK], the
equations of geodesic curves along SDiff(D) exactly are the Euler equations
of incompressible inviscid fluids (see also [MP] and [Br3]).
In our framework, it is very easy to define generalized geodesic curves on
DS(D).

Definition 2.1 Given µ0, µ1 in DS(D), we define a (minimizing) general-
ized geodesic curve joining µ0 and µ1 to be a pair (µ,E) of (Borel) measures
defined on Q = [0, 1]×D ×D and valued in R+ × Rd such that∫

Q
∂sf(s, x, y)dµ(s, x, y) +∇xf(s, x, y) · dE(s, x, y) (30)

=
∫
D2
f(1, x, y)dµ1(x, y)−

∫
D2
f(0, x, y)dµ0(x, y),
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for all smooth function f on [0, 1]×D2, and∫
Q
f(s, x)dµ(s, x, y) =

∫ 1

0

∫
D
f(s, x)dxds, (31)

for all continuous function f on [0, 1]×D, that minimizes

K(µ,E) = sup
α,β

∫
Q
α(s, x, y)dµ(s, x, y) + β(s, x, y) · dE(s, x, y) (32)

where the supremum is performed over all pair (α, β) of continuous functions
defined on Q respectively valued in R and Rmd, subject to satisfy

α(s, x, y) +
1

2
|β(s, x, y)|2 ≤ 0. (33)

pointwise.

This can be seen as a multiphasic OT problem, where to each point y ∈ D
is attached a “phase” described by µ(·, ·, y) and E(·, ·, y). These phases are
coupled by constraint (31) which forces the different phases to share the
volume available in D during their motion. Not surprisingly, this makes the
optimality equations more subtle than in the classical OT. Indeed, there is a
Lagrange multiplier corresponding to constraint (31) that physically speaking
is the pressure p(s, x) of the fluid at each point x ∈ D and each s ∈ [0, 1].
The formal optimality conditions read

E(s, x, y)/µ(s, x, y) = e(s, x, y), e(s, x, y) = ∇xφ(s, x, y), (34)

∂sφ(s, x, y) +
1

2
|∇xφ(s, x, y)|2 + p(t, x) = 0.

This multiphasic OT problem has been studied in details in [Br3, AF1, AF2]
and related to the classical Euler equations. (In some cases it is shown that
generalized geodesics can be approximated by classical solutions to the Euler
equations with vanishing forcing.) To motivate further researches, let us just
quote two results that are true for any pair of data (µ0, µ1) in DS(D). First,
∇p is uniquely defined (although there may be several generalized minimizing
geodesic between µ0 and µ1). This fact follows easily from convex duality, but
is rather surprising from the classical fluid mechanics point of view. Next,
∇p has some limited regularity [Br3, AF1, AF2]: it is a locally bounded
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measures in the interior of [0, 1]×D, which is not obvious and follows from
the minimization principle and its duality properties. Further regularity can
therefore be expected. We conjecture that p is semi-concave in x (which
implies that the second order derivatives in space of p are measures and not
only the first order ones, as already established), in particular as the data µ0

and µ1 are absolutely continuous with respect to the Lebesgue measure on
D2 with smooth positive density, as in Caffarelli’s regularity theory of the
(quadratic) OT [Ca].
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