Exam, Optimal Transport, 27 May 2014, 3 hours

Yann Brenier

23 mars 2022

Exercise 1 (4 points)

Let μ be the Lebesgue measure on $[0,1]$ and ν be the Borel measure defined on $[0,1]$ by

$$
\int_{[0,1]} f(y) \nu(d y)=(1-\alpha) \int_{0}^{1} f(y) d y+\alpha f(1), \quad \forall f \in C(\mathbf{R}),
$$

where α is fixed in $[0,1]$. What is the optimal transport map T sending μ to ν ? Find the values of α for which $T:[0,1] \rightarrow[0,1]$ is a smooth map (resp. a one-to-one map).

Exercise 2 (4 points)

Let μ be the Lebesgue measure on $[0,1]^{2}$ and let

$$
T:(x, y) \in[0,1]^{2} \rightarrow(\sqrt{x} \cos (2 n \pi y), \sqrt{x} \sin (2 n \pi y)) \in \mathbf{R}^{2}
$$

where n is a fixed integer $n \in\{0,1,2\}$. What is the image measure ν of μ by T ? Find the values of n for which
i) T is an optimal transport map;
ii) ν is absolutely continuous with respect to the Lebesgue measure.

Problem (12 points)

Let D be the unit cube in \mathbf{R}^{d}. We are given two smooth functions $\gamma_{0}>0$ and $\gamma_{1}>0$ such that

$$
\int_{D} \gamma_{0}(x) d x=\int_{D} \gamma_{1}(x) d x=1
$$

We denote $Q=[0,1] \times D$ and set, for every continuous real-valued function $((t, x) \rightarrow f(t, x)) \in C(Q)$,

$$
B T[f]=\int_{Q}\left(f(1, x) \gamma_{1}(x)-f(0, x) \gamma_{0}(x)\right) d x
$$

We are given a convex function $K: C(Q) \rightarrow \mathbf{R}$. We denote by $\left.\left.K^{*}: C(Q)^{\prime} \rightarrow\right]-\infty,+\infty\right]$ the Legendre-Fenchel transform of K.
We consider the set \mathbf{F} of all pairs of smooth real-valued functions (ϕ, θ) defined on $Q=[0,1] \times D$

$$
(t, x) \in Q \rightarrow \phi(t, x) \in \mathbf{R}, \quad(t, x) \in Q \rightarrow \theta(t, x) \in \mathbf{R}
$$

such that

$$
\partial_{t} \phi(t, x)+\frac{1}{2}\left|\nabla_{x} \phi(t, x)\right|^{2} \leq \theta(t, x), \quad \forall(t, x) \in Q
$$

We consider the maximization problem

$$
J=\sup _{(\phi, \theta) \in \mathbf{F}} B T[\phi]-K[\theta]
$$

and a maximizing sequence $\left(\phi^{\epsilon}, \theta^{\epsilon}\right)$ such that $B T\left[\phi^{\epsilon}\right]-K\left[\theta^{\epsilon}\right] \geq J-\epsilon$, for $\left.\left.\epsilon \in\right] 0,1\right]$.

Question 1 (6 points)

Using the Rockafellar duality theorem, show the existence of at least one pair of (Borel) measures (c, m) defined on Q and respectively valued in \mathbf{R}_{+}and $\mathbf{R}^{\mathbf{d}}$ such that : m is absolutely continuous with respect to c with density $v \in L^{2}\left(Q, d c ; \mathbf{R}^{d}\right)$, with

$$
\begin{gathered}
m(d t, d x)=v(t, x) c(d t, d x), \quad J=\int_{Q} \frac{1}{2}|v(t, x)|^{2} d c(t, x)+K^{*}[c], \\
\int_{Q}\left(\partial_{t} f(t, x)+v(t, x) \cdot \nabla_{x} f(t, x)\right) d c(t, x)=B T(f), \text { for every smooth function } \mathrm{f} \text { on } \mathrm{Q}, \\
\left.\int_{Q}\left|\partial_{t} \phi^{\epsilon}(t, x)+\frac{1}{2}\right| \nabla_{x} \phi^{\epsilon}(t, x)\right|^{2}-\theta^{\epsilon}(t, x)\left|d c(t, x) \leq \epsilon, \quad \int_{Q} \frac{1}{2}\right| v(t, x)-\left.\nabla_{x} \phi^{\epsilon}(t, x)\right|^{2} d c(t, x) \leq \epsilon, \\
0 \leq K^{*}[c]+K\left[\theta^{\epsilon}\right]-<c, \theta^{\epsilon}>\leq \epsilon .
\end{gathered}
$$

Question 2 (3 points)

Assume that there exist optimal solutions (ϕ, θ, c, v) and that all of them satisfy $c(d t, d x)=$ $\gamma(t, x) d t d x$, with ϕ, θ, γ, v smooth and $\gamma>0$. With the help of the previous question, prove that these solutions satisfy the system of equations in the interior of $Q=[0,1] \times D$,

$$
\begin{gathered}
\partial_{t} \gamma(t, x)+\nabla_{x} \cdot(\gamma(t, x) v(t, x))=0 \\
\partial_{t} v(t, x)+\left(v(t, x) \cdot \nabla_{x}\right) v(t, x)=E(t, x)
\end{gathered}
$$

(where the fields v et E will be respectively defined in terms of ϕ and θ), as well as the time-boundary conditions : $\gamma(0, \cdot)=\gamma_{0}, \quad \gamma(1, \cdot)=\gamma_{1}$ on D. What can one say about the uniqueness of E ?

Question 3 (3 points)

Still in the framework of the previous question, we restrict ourself to the case :

$$
K: \theta \in C(Q) \rightarrow \int_{Q} \exp (\theta(t, x)) d t d x
$$

Show that

$$
\theta(t, x)=\lambda(\gamma(t, x))
$$

for a certain function $\lambda:]-\infty,+\infty$ [to be found. Then, discuss the uniqueness of (γ, v).

