Exam, Optimal Transport, 27 May 2014, 3 hours

Yann Brenier

 $23 \ \mathrm{mars} \ 2022$

Exercise 1 (4 points)

Let μ be the Lebesgue measure on [0,1] and ν be the Borel measure defined on [0,1] by

$$\int_{[0,1]} f(y)\nu(dy) = (1-\alpha) \int_0^1 f(y)dy + \alpha f(1), \quad \forall f \in C(\mathbf{R}),$$

where α is fixed in [0,1]. What is the optimal transport map T sending μ to ν ? Find the values of α for which $T: [0,1] \rightarrow [0,1]$ is a smooth map (resp. a one-to-one map).

Exercise 2 (4 points)

Let μ be the Lebesgue measure on $[0,1]^2$ and let

$$T: (x,y) \in [0,1]^2 \to (\sqrt{x}\cos(2n\pi y), \sqrt{x}\sin(2n\pi y)) \in \mathbf{R}^2,$$

where n is a fixed integer $n \in \{0, 1, 2\}$. What is the image measure ν of μ by T? Find the values of n for which

i) T is an optimal transport map;

ii) ν is absolutely continuous with respect to the Lebesgue measure.

Problem (12 points)

Let D be the unit cube in \mathbf{R}^d . We are given two smooth functions $\gamma_0 > 0$ and $\gamma_1 > 0$ such that

$$\int_D \gamma_0(x) dx = \int_D \gamma_1(x) dx = 1.$$

We denote $Q = [0,1] \times D$ and set, for every continuous real-valued function $((t,x) \to f(t,x)) \in C(Q)$,

$$BT[f] = \int_Q (f(1,x)\gamma_1(x) - f(0,x)\gamma_0(x))dx.$$

We are given a convex function $K : C(Q) \to \mathbf{R}$. We denote by $K^* : C(Q)' \to] - \infty, +\infty$] the Legendre-Fenchel transform of K.

We consider the set **F** of all pairs of smooth real-valued functions (ϕ, θ) defined on $Q = [0, 1] \times D$

$$(t,x) \in Q \to \phi(t,x) \in \mathbf{R}, \ (t,x) \in Q \to \theta(t,x) \in \mathbf{R},$$

such that

$$\partial_t \phi(t,x) + \frac{1}{2} |\nabla_x \phi(t,x)|^2 \leq \theta(t,x), \ \forall (t,x) \in Q.$$

We consider the maximization problem

$$J = \sup_{(\phi,\theta)\in\mathbf{F}} BT[\phi] - K[\theta]$$

and a maximizing sequence $(\phi^{\epsilon}, \theta^{\epsilon})$ such that $BT[\phi^{\epsilon}] - K[\theta^{\epsilon}] \ge J - \epsilon$, for $\epsilon \in]0, 1]$.

Question 1 (6 points)

Using the Rockafellar duality theorem, show the existence of at least one pair of (Borel) measures (c,m) defined on Q and respectively valued in \mathbf{R}_+ and \mathbf{R}^d such that : m is absolutely continuous with respect to c with density $v \in L^2(Q, dc; \mathbf{R}^d)$, with

$$\begin{split} m(dt,dx) &= v(t,x)c(dt,dx), \quad J = \int_Q \frac{1}{2} |v(t,x)|^2 dc(t,x) + K^*[c], \\ \int_Q (\partial_t f(t,x) + v(t,x) \cdot \nabla_x f(t,x)) dc(t,x) &= BT(f), \text{ for every smooth function f on } Q, \\ \int_Q |\partial_t \phi^\epsilon(t,x) + \frac{1}{2} |\nabla_x \phi^\epsilon(t,x)|^2 - \theta^\epsilon(t,x)| dc(t,x) &\leq \epsilon, \quad \int_Q \frac{1}{2} |v(t,x) - \nabla_x \phi^\epsilon(t,x)|^2 dc(t,x) \leq \epsilon, \\ 0 &\leq K^*[c] + K[\theta^\epsilon] - \langle c, \theta^\epsilon \rangle \leq \epsilon. \end{split}$$

Question 2 (3 points)

Assume that there exist optimal solutions (ϕ, θ, c, v) and that all of them satisfy $c(dt, dx) = \gamma(t, x)dtdx$, with ϕ, θ, γ, v smooth and $\gamma > 0$. With the help of the previous question, prove that these solutions satisfy the system of equations in the interior of $Q = [0, 1] \times D$,

$$\partial_t \gamma(t, x) + \nabla_x \cdot (\gamma(t, x)v(t, x)) = 0,$$

$$\partial_t v(t, x) + (v(t, x) \cdot \nabla_x)v(t, x) = E(t, x)$$

(where the fields v et E will be respectively defined in terms of ϕ and θ), as well as the time-boundary conditions : $\gamma(0, \cdot) = \gamma_0$, $\gamma(1, \cdot) = \gamma_1$ on D. What can one say about the uniqueness of E?

Question 3 (3 points)

Still in the framework of the previous question, we restrict ourself to the case :

$$K: \theta \in C(Q) \to \int_Q \exp(\theta(t, x)) dt dx.$$

Show that

$$\theta(t, x) = \lambda(\gamma(t, x))$$

for a certain function $\lambda :] - \infty, +\infty [$ to be found. Then, discuss the uniqueness of (γ, v) .