Homework : the Sinkhorn algorithm

Luca Nenna

February 25, 2022

You may use the language of your choice (Python, Julia, Matlab,...) and return a short report as a jupyter notebook or pdf file (with concise and justified answers, full proofs are not required).The deadline to submit the report is March 25 at 6 a.m. (New York time).

The aim of this homework is to solve the following problem by mean of the Sinkhorn algorithm

$$
P_{\varepsilon}=\inf \left\{\langle\gamma \mid c\rangle+\varepsilon \operatorname{Ent}(\gamma) \mid \gamma \in \mathbb{R}^{X \times Y}, \sum_{y \in Y} \gamma_{x y}=\mu_{x}, \sum_{x \in X} \gamma_{x y}=\nu_{y}\right\}
$$

where $\varepsilon>0, X$ and Y are two finite sets with both cardinality $N,\langle\gamma \mid c\rangle=\sum_{x, y} \gamma_{x y} c(x, y), \operatorname{Ent}(\gamma)=$ $\sum_{x, y} e\left(\gamma_{x y}\right)$ with

$$
e(r)= \begin{cases}r(\log r-1) & \text { if } r>0 \\ 0 & \text { if } r=0 \\ +\infty & \text { if } r<0\end{cases}
$$

We know from Lecture 2 that the optimal solution to P_{ε} takes the following form

$$
\gamma_{x, y}=\operatorname{diag}\left(D_{\varphi}\right) \exp \frac{-c(x, y)}{\varepsilon} \operatorname{diag}\left(D_{\psi}\right)
$$

where $\operatorname{diag}\left(D_{\varphi}\right)$ and $\operatorname{diag}\left(D_{\psi}\right)$ are two diagonal matrices having the diagonal D_{φ} and D_{ψ}, respectively. The Sinkhorn algorithm is then defined as

```
Algorithm 1 Sinkhorn-Knopp algorithm
    function \(\operatorname{Sinkhorn}\left(\mu, \nu, K_{\varepsilon}, k_{\max }\right)\)
        \(D_{\varphi}^{0} \leftarrow \mathbf{1}_{X}, D_{\psi}^{0} \leftarrow \mathbf{1}_{Y}\)
        for \(0 \leqslant k<k_{\text {max }}\) do
            \(D_{\varphi}^{k+1} \leftarrow \mu . /\left(K D_{\psi}^{k}\right)\)
            \(D_{\psi}^{k+1} \leftarrow \nu . /\left(K^{T} D_{\varphi}^{k+1}\right)\)
        end for
    end function
```

where ./ stand for the element-wise division and $K_{x, y}=e^{\frac{-c(x, y)}{\varepsilon}}$. Here we will always consider $c(x, y)=|x-y|^{2}$ where $|\cdot|$ denotes the Euclidean norm.

1. Write a function sinkhorn(mu, nu, Keps, kmax) that takes as input two vectors mu and nu, the kernel Keps defined as $K_{x, y}=\exp \frac{-(x-y)^{2}}{\varepsilon}$ and the maximum number of iterations kmax. The function will return two vectors Dphi and Dpsi and a matrix gamma.
2. Let X and Y two sets of N random points in $[0,1]$ (i.e in Python one can use the function np.random.rand) and consider two measures such that $\mu_{x}=\frac{1}{N} \forall x \in X$ and $\nu_{y}=\frac{1}{N} \forall y \in Y$. Compute the optimal solution to P_{ε} for different values of ε, plot it and comment the results. What do you expect as $\varepsilon \rightarrow 0$?
3. Modify the function sinkhorn (mu, nu, Keps, kmax) such that it also returns a vector err1 containing the constraints satisfaction at each step of the algorithm, that is $\operatorname{err}_{1}^{k}=\left\|\gamma_{1}^{k}-\mu\right\|_{1}$ where $\left(\gamma_{1}^{k}\right)_{x}=\sum_{y} \gamma_{x, y}^{k}$. Display err1 in log-scale by taking the same data as in question 2 and study the impact of ε on the convergence rate of the algorithm.
4. Modify the function by using $e r r_{1}^{k} \leqslant t o l$ as a stopping criterion. The new function will take as input also a tolerance parameter tol: sinkhorn(mu, nu, Keps, kmax, tol).
5. Let μ and ν be the discretization of truncated Gaussian distributions of (mean, variance) $\left(0.2,0.1^{2}\right)$ and $\left(0.6,0.2^{2}\right)$ and compute the solution to P_{ε} by choosing the smallest ε possible. Display the support of the optimal transport plan.
6. Because of the discretization and the regularization, we see that the optimal transport plan is not deterministic. A workaround is to define the barycentric projection map

$$
T(x)=\frac{\sum_{y \in Y} y \gamma_{x, y}}{\sum_{y \in Y} \gamma_{x, y}}
$$

which is well-defined whenever $a_{x}=\sum_{y \in Y} P_{x, y}>0$. Use the barycentric projection to compute an approximation of the transport plan between the two measure.

