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Introduction: Discret Optimal Transport

We now consider the optimal transport problems between probability measures on two
finite sets X and Y with, for simplicity, both of cardinality N and we set

µ =
∑
x∈X

µxδx ν =
∑
y∈Y

νyδy.

Definition 0.1 (Discrete OT). The discrete Optimal transport problem between two
given measures µ and ν and a given cost function c : X×Y → R+∪{+∞} is the following
minimization problem

inf

∑
x∈X

∑
y∈Y

γxyc(x, y) | γ ∈ Π(µ, ν)

 , (0.1)

where the set of admissible couplings is now defined as

Π(µ, ν) := {γ ∈ X × Y | γxy > 0,
∑
y∈Y

γxy = µx ∀x ∈ X,
∑
x∈X

γxy = νy ∀y ∈ Y }.

Unfortunately, this linear programming problem has complexity O(N3) which actually
means that it is infeasible for large N . A way to overcome this difficulty is by means of
the Entropic Regularization which provides an approximation of Optimal Transport
with lower computational complexity and easy implementation.

References: Entropic regularisation of Optimal Transport is a very active research field.
We refer the interested reader to [1, 5, 9, 11, 6] and the citations therein. We also remark
that these notes are inspired by the graduate classe on Numerical Optimal Transport given
by F.-X. Vialard [13].

1 The Entropic Optimal Transport

1.1 The discrete case

We start from the primal formulation of the optimal transport problem, but instead of
imposing the constraints γxy > 0, we add a term Ent(γ) =

∑
x,y e(γxy), involving the

(opposite of the) entropy

e(r) =


r(log r − 1) if r > 0

0 if r = 0

+∞ if r < 0
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More precisely, given a parameter ε > 0 we consider

Pε = inf

〈γ|c〉+ εEnt(γ) | γ ∈ X × Y,
∑
y∈Y

γxy = µx,
∑
x∈X

γxy = νy

 , (1.2)

where 〈γ|c〉 =
∑

x,y γxyc(x, y) and Ent(γ) =
∑

x,y e(γxy).

Theorem 1.1. The problem Pε has a unique solution γ?, which belongs to Π(µ, ν). More-
over, if min(minx∈X µx,miny∈Y νy) > 0 then

γx,y > 0 ∀(x, y) ∈ X × Y.

Before introducing the duality, it is important to state the following convergence result
in ε.

Theorem 1.2 (Convergence in ε). The unique solution γε to (1.2) converges to the opti-
mal solution with minimal entropy within the set of all optimal solutions of the Optimal
Transport problem, that is

γε −−−→
ε→0

argmin {Ent(γ) | γ ∈ Π(µ, ν), 〈γ|c〉 = MKc(µ, ν)} . (1.3)

Proof. Consider a sequence (εk)k such that εk → 0 and εk > 0 and denote γk the solution
to (1.2) with ε = εk. Since Π(µ, ν) is bounded and close we can extract a converging
subsequence γk → γ? ∈ Π(µ, ν). Take now any optimal γ for the unregularized problem
then by optimality of γk and γ one has

0 6 〈γk|c〉 − 〈γ|c〉 6 εk(Ent(γ)− Ent(γk)). (1.4)

Since Ent(·) is continuous, by taking the limit k → +∞ in (1.4) we get 〈γ?|c〉 = 〈γ|c〉.
Furthermore, dividing by εk and taking the limit we obtain that Ent(γ) > Ent(γ?) showing
that γ? is a solution to the minimization problem in (1.3). By strict convexity of Ent the
optimization problem (1.3) has a unique solution and the whole sequence is converging to
γ?.

We want now to derive formally the dual problem. For this purpose we introduce the
Lagrangian associated to (1.2)

L(γ, ϕ, ψ) :=
∑
x,y

γxyc(x, y) + εe(γxy) +
∑
x∈X

ϕ(x)

µx −∑
y∈Y

γxy


+
∑
y∈Y

ψ(y)

νy −∑
y∈Y

γxy

 ,

(1.5)

where ϕ : X → R and ψ : Y → R are the Lagrange multipliers. Then,

Pε = inf
γ

sup
ϕ,ψ

L(γ, ϕ, ψ),
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and the dual problem is obtained by interchanging the infimum and the supremum :

Dε = sup
ϕ,ψ

min
γ

∑
x,y

γxy(c(x, y)− ψ(y)− ϕ(x) + ε(log(γxy)− 1))+∑
x∈X

ϕ(x)µx +
∑
y∈Y

ψ(y)νy.
(1.6)

Taking the derivative with respect to γxy, we find that for a given ϕ,ψ, the optimal γ
must satisfy:

c(x, y)− ψ(y)− ϕ(x) + ε log(γxy) = 0

i.e. γxy = exp
(ϕ(x) + ψ(y)− c(x, y)

ε

) (1.7)

Putting these values in the definition of Dε gives

Dε = sup
ϕ,ψ

Φε(ϕ,ψ) with (1.8)

Φε(ϕ,ψ) :=
∑
x∈X

ϕ(x)µx +
∑
y∈Y

ψ(y)νy −
∑
x,y

ε exp
(ϕ(x) + ψ(y)− c(x, y)

ε

)

Note that thanks to the relation (1.7), one can recover a solution to the primal problem
from the dual one. This is true because, unlike the original linear programming formulation
of the optimal transport problem, the regularized problem (1.2) is smooth and strictly
convex. The following duality result holds

Theorem 1.3 (Strong duality). Strong duality holds and the maximum in the dual problem
is attained, that is ∃ϕ,ψ such that

Pε = Dε = Φε(ϕ,ψ).

Corollary 1.4. If (ϕ,ψ) is the solution to (1.8), then the solution γ? to (1.2) is given by

γx,y = exp
(ϕ(x) + ψ(y)− c(x, y)

ε

)
Notice now that the optimal coupling γ can be written as

γx,y = Dϕe
−c(x,y)

ε Dψ,

where Dϕ and Dψ are the diagonal matrices associated to eϕ/ε and eψ/ε, respectively. The
problem is now similar to a matrix scaling problem

Definition 1.5 (Matrix scaling problem). Let K ∈ RN×N be a matrix with positive
coefficients. Find Dψ and Dψ positive diagonal matrices in K ∈ RN×N such that DϕKDψ

is doubly stochastic, that is sum along each row and each column is equal to 1.

Remark 1.6. Uniqueness fails since if (Dϕ, Dψ) is a solution then so is (cDϕ,
1
cDψ) for

every c ∈ R+.
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Algorithm 1 Sinkhorn-Knopp algorithm for the matrix scaling problem
1: function Sinkhorn-Knopp(K)
2: D0

ϕ ← 1N , D
0
ψ ← 1N

3: for 0 6 k < kmax do
4: Dk+1

ϕ ← 1N ./(KD
k
ψ)

5: Dk+1
ψ ← 1N ./(K

TDk+1
ϕ )

6: end for
7: end function

Algorithm 2 Sinkhorn-Knopp algorithm for the regularised optimal transport problem
1: function Sinkhorn-Knopp(Kε, µ, ν)
2: D0

ϕ ← 1X , D
0
ψ ← 1Y

3: for 0 6 k < kmax do
4: Dk+1

ϕ ← µ./(KDk
ψ)

5: Dk+1
ψ ← ν./(KTDk+1

ϕ )
6: end for
7: end function

The matrix scaling problem can be easily solved by using an iterative algorithm, known
as Sinkhorn-Knopp algorithm, which simply alternates updating Dϕ and Dψ in order to
match the marginal constraints (a vector 111N of ones in this simple case).

where ./ stand for the element-wise division. Denoting by (Kε)x,y = e
−c(x,y)

ε the
algorithm takes the form 2 for the regularized optimal transport problem.

Notice that one can recast the regularized OT in the framework of bistochastic ma-
trix scaling by replacing the kernel e

−c(x,y)
ε with (Kε)x,y = diag(µ)e

−c(x,y)
ε diag(ν), where

diag(µ) (diag(ν)) denotes the diagonal matrix with the vector µ (ν) as main diagonal. In
this case the problem (1.2) can be re-written as

Pε(µ, ν) = inf

〈γ|c〉+ εH(γ|µ⊗ ν) | γ ∈ X × Y,
∑
y∈Y

γxy = µx,
∑
x∈X

γxy = νy

 , (1.9)

where H(ρ|µ) :=
∑

x ρx(log( ρxµx )− 1) is the relative entropy or the Kullback-Leibler diver-
gence.

Good to know: one can easily recast the regularized OT in the continuous
framework as follows

Pε(µ, ν) = inf

{∫
X×Y

c(x, y)dγ(x, y) + εH(γ|µ⊗ ν) | γ ∈ Π(µ, ν)

}
, (1.10)

where

H(ρ|π) =


∫
X×Y

(
log
(dρ(x, y)

dπ(x, y)

)
− 1
)

dρ(x, y), if ρ� π

+∞, otherwise,

and the marginals µ, ν are probability measures on the compact metric spaces X and
Y , respectively. This problem is often referred to as the static Schrödinger problem
[9] since it was initially considered by Schrödinger in statistical physics. Once again,
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under mild assumptions on the cost functions, one can prove that the regularized
problem converges to original one as ε→ 0; see [4, 8].

1.2 The convergence of Sinkhorn in the continuous setting

As presented in Lecture 1, the existence of Kantorovich potentials for the standard Op-
timal Transport problem can be proven by standard compactness arguments. By using
similar arguments we show existence for the regularized dual problem (and convergence
of Sinkhorn at the same time) in the continuous framework. We firstly recall that a
coordinate ascent algorithm on a fucntion of two variables f(x, y) can written as

yk+1 = argmaxy f(xk, y),

xk+1 = argmaxx f(x, yk+1).

The Sinkhorn algorithm is actually a coordinate ascent algorithm: the main idea is indeed
to maximize Φε(ϕ,ψ) by maximizing alternatively in ϕ and ψ. From now on we assume
for simplicity that X = Y are compact and c is a continuous cost function.

Proposition 1.7. The dual problem to (1.10) reads as

Dε = sup{Φε(ϕ,ψ) | ϕ,ψ ∈ C0(X)}, (1.11)

where

Φε(ϕ,ψ) :=

∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

− ε
∫
X×Y

exp
(ϕ(x) + ψ(y)− c(x, y)

ε

)
dµ⊗ dν(x, y).

It is strictly concave w.r.t. each argument ϕ and ψ and strictly concave w.r.t. ϕ(x)+ψ(y).
It is also Fréchet differentiable for the (C0, ‖·‖∞) topology. Furthermore, if a maximizer
exists it is unique up to a constant, that is Φε(ϕ,ψ) = Φε(ϕ+C,ψ−C) for every C ∈ R.

Proof. We leave the proof as an exercice.

Proposition 1.8. The maximization of Φε(ϕ,ψ) w.r.t. each variable can be made explicit,
and the Sinkhorn algorithm can be defined as

ϕk+1(x) = −ε log

(∫
X

exp
(1

ε
(ψk(y)− c(x, y)

)
dν(y)

)
:= Sν(ψk), (1.12)

ψk+1(y) = −ε log

(∫
X

exp
(1

ε
(ϕk+1(x)− c(x, y)

)
dµ(x)

)
:= Sµ(ϕk+1). (1.13)

Moreover, the following properties hold

(i) Φε(ϕk, ψk) 6 Φε(ϕk+1, ψk) 6 Φε(ϕk+1, ψk+1);

(ii) If c(x, y) is ω−continuous then ϕk+1, ψk+1 are also ω−continuous ;

(iii) If ψk − C (ϕk+1 − C) is bounded by M on the support of ν (µ), then so is ϕk+1

(ψk+1).
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Proof. (1.12) and (1.13) follow by writing the first-order necessary condition which gives
us

1− exp

(
ϕ(x)

ε

)∫
Y

exp
(
− 1

ε
(ψ(y)− c(x, y))

)
dν(y) = 0, x− a.e.

implying the desired formula (and by symmetry, the same result on Sµ holds). Therefore,
Sν(ψ) is the unique maximizer of ϕ 7→ Φε(ϕ,ψ).
By definition of ascent on each coordinate, (i) is obtained directly. More generally one
can prove that the application Sν (Sµ) is ω−continuous. Let x1, x2 ∈ X then

|Sν(ψ)(x1)− Sν(ψ)(x2)| = ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x2,y)

)
dν(y)

)
− ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)

= ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)+c(x1,y)−c(x2,y)

)
dν(y)

)
− ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)

6 ε log

(
e

ω(d(x1,x2))
ε

∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)
− ε log

(∫
X
e

(
1
ε
(ψ(y)−c(x1,y)

)
dν(y)

)
= ω(d(x1, x2)).

(1.14)

The last point is just a bound on the iterates.

Proposition 1.9. The sequence (ϕk, ψk) defined by (1.12) and (1.13) converges in (C0, ‖·‖∞)
to the unique (up to a constant) couple of potentials (ϕ,ψ) which maximizes Φε.

Proof. Shifting the potentials by an additive constant, one can replace the optimization
set by the couples (ϕ,ψ) which have uniformly bounded modulus of continuity and such
that ϕ(x0) = 0 for a given x0 ∈ X. Recall that by proposition 1.7 the maximum of Φ
is achieved at some couple (ϕ∗, ψ∗) which is unique up to a constant. Then, by prop.
1.8 (ϕk, ψk) are uniformly bounded and have uniformly modulus of continuity and one
can extract a converging subsequence to (ϕ,ψ). By continuity of Φ and the monotonicity
of the sequence, Φε(ϕ, Sµ(ϕ)) 6 Φε(Sν ◦ Sµ(ϕ), Sµ(ϕ)) = Φε(ϕ, Sµ(ϕ)). Therefore, the
maximizer coordinatewise being unique, one has

Sν(ψ) = ϕ, (1.15)

Sµ(ϕ) = ψ. (1.16)

These show that (ϕ,ψ) is a critical point for Φε, thus being a maximizer.

The proof of convergence relies on some important properties of the log−sum−exp
(LSE) function log

∫
exp which we summarise in the next Lemma. Before that let define

the pseudo-norm ‖·‖◦,∞ of uniform convergence as

‖f‖◦,∞ :=
1

2
(sup f − inf f) = inf

a∈R
‖f + a‖∞ .

Lemma 1.10. The LSE function is convex and

‖Sµ(ϕ1)− Sµ(ϕ2)‖◦,∞ 6 ‖ϕ1 − ϕ2‖◦,∞ . (1.17)
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Proof. Convexity is easily verified. We can get the 1−Lipschitz property as follows

|Sµ(ϕ1)(x)− Sµ(ϕ2)(x)| =

∣∣∣∣∣
∫ 1

0

d

dt
Sµ(ϕ2 + t(ϕ1 − ϕ2))dt

∣∣∣∣∣
6
∫ 1

0

∣∣∣∣∣
∫
X

(ϕ1 − ϕ2)
exp(1ε (ϕ2 + t(ϕ1 − ϕ2)− c))∫

X exp(1ε (ϕ2 + t(ϕ1 − ϕ2)− c))dµ
dµ

∣∣∣∣∣
6 ‖ϕ1 − ϕ2‖∞ .

Notice that the equality occurs if and only if ϕ1−ϕ2 is constant µ−a.e.. In particular we
would have ϕ1 = ϕ2 +a and Sµ(ϕ1) = Sµ(ϕ2)+a. Thus it is natural to consider the set of
continuous functions up to an additive constant C(X)/R endowed with the pseudo-norm
introduced above. Then, since Sµ(ϕ1 + a) = Sµ(ϕ1) + a we got the same inequality for
the norm ‖·‖◦,∞.

Lemma 1.11. Let u, v ∈ C(X) and µ ∈ P(X) and denote νu and νv the Gibbs measures
associated to u and v, that is dνu = 1

Zu
eudµ and dνv = 1

Zv
evdµ, where Zu and Zv are the

normalizing constants, then

‖νu − νv‖L1 6 2(1− e−2‖u−v‖◦,∞).

Proof. Consider a bounded function g on X and define

ηg(t) :=

∫
X
g
etv+(1−t)u

Zt,g
dµ,

where Zt,g =
∫
X e

tv+(1−t)udµ. Differentiating we get

η′g(t) + ηv−u(t)ηg(t) = η(v−u)g(t),

and

e
∫ t
0 ηv−u(s)dsηg(t)− ηg(0) =

∫ t

0
η(v−u)g(s)e

∫ s
0 ηv−u(r)drds.

Observe that

|e
∫ t
0 ηv−u(s)dsηg(t)− ηg(0)| 6 ‖g‖∞

∫ t

0
η(u−v)(s)e

∫ s
0 ηu−v(r)drds

6 ‖g‖∞
(
e
∫ t
0 ηu−v(s)ds − 1

)
.

Interchanging the role of u and v we have two possible cases: ηg(1) > ηg(0) > 0 or
ηg(1) > 0 > ηg(0). In the first case one has

|e
∫ t
0 ηu−v(s)ds(ηg(t)− ηg(0))| 6 |e

∫ t
0 ηu−v(s)dsηg(t)− ηg(0)| 6 ‖g‖∞

(
e
∫ t
0 ηu−v(s)ds − 1

)
.

In the second case there exists t0 ∈ [0, 1] such that ηg(t0) = 0 and we get

|ηg(1)| 6 ‖g‖∞
(

1− e
∫ 1
t0
ηu−v(s)ds

)
︸ ︷︷ ︸

:=a1

|ηg(0)| 6 ‖g‖∞
(

1− e
∫ t0
0 ηu−v(s)ds

)
︸ ︷︷ ︸

:=a0

.
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Thus,
|ηg(1)− ηg(0)| 6 |ηg(1)|+ |ηg(0)| 6 2 ‖g‖∞max(a1, a0)

By exploiting the fact that ηu−v(t) 6 2 ‖u− v‖◦,∞ we obtain in both cases that

‖νu − νv‖ 6 2(1− e−2‖u−v‖◦,∞)

Theorem 1.12. (Convergence of Sinkhorn) The map S = Sν ◦ Sµ is a contraction for
‖·‖◦,∞. In particular the sequence (ϕk, ψk) defined by the Sinkhorn algorithm linearly
converges to the unique (up to a constant) maximiser of the dual problem.

Proof. We actually have to prove that

‖Sµ(ϕ1)− Sµ(ϕ2)‖◦,∞ 6 κµ ‖ϕ1 − ϕ2‖◦,∞ . (1.18)

Once we have established that Sµ is a contraction then by lemma 1.10 it easily follows
that

‖S(ϕ1)− S(ϕ2)‖◦,∞ 6 κµ ‖ϕ1 − ϕ2‖◦,∞ ,

which would conclude the proof.
In order to prove (1.18) we start by giving an estimation of the oscillations of Sµ

1

2
|Sµ(ϕ1)(y)−Sµ(ϕ2)(y)−Sµ(ϕ1)(x) +Sµ(ϕ2)(x)| 6 1

2

∣∣∣∣∣
∫ 1

0

∫
X

(ϕ1−ϕ2)(dηt,y−dηt,x)dt

∣∣∣∣∣,
where dηt,z := 1

Z e
t(ϕ1−ϕ2)+ϕ2−c(z,·)

ε dµ where Z is the normalising constant. Since dηt,z is a
Gibbs measure we can apply the L1 bound of lemma 1.11 to estimate ‖ηt,y − ηt,x‖L1 and
get

‖Sµ(ϕ1)− Sµ(ϕ2)‖◦,∞ 6 κµ ‖ϕ1 − ϕ2‖◦,∞

with κµ = (1− e−2
‖c‖◦,∞

ε ).

Remark 1.13 (Convergence speed). This theorem shows that the Sinkhorn algorithm
converges linearly, but notice that the contraction constant has a bad dependency in ε.
Denoting C = ‖c‖◦,∞, to get an error of β one needs

(1− e−2
C
ε )k 6 β

that is
k ' e2C/ε log(1/β).

Remark 1.14. We refer the interested reader to [3, 10] where the convergence of Sinkhorn
algorithm in infinite dimension (and generalized also to the multi-marginal case) is treated.

A The convergence of Sinkhorn for the Hilbert metric in the
discrete setting

We focus now on the global convergence analysis of the Sinkhorn algorithm in the discrete
setting by using the Hilbert projective metric on Rn+,? (positive vectors).
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Definition A.1 (Hilbert projective metric). The Hilbert projective metric on Rn+,? is
defined as

∀(u, v) ∈ (Rn+,?)2, dH(u, v) := || log(u)− log(v)||V ,
Where

||x||V = max
i
xi −min

i
xi.

Before stating the convergence result we need the following fundamental theorem,
which shows that a positive matrix is a strict contraction on the cone of positive vector

Theorem A.2 ([2, 12]). Let K ∈ Rn×n+,? , then for (u, v) ∈ (Rn+,?)2

dH(Ku,Kv) 6 λ(K)dH(u, v), (A.19)

where

λ(K) =

√
η(K)− 1√
η(K) + 1

< 1

and
η(K) = max

i,j,kl

KikKjl

KjkKil
.

We have then the following convergence result (we use the same notations as in 2)

Theorem A.3 ([7]). One has (Dk
ϕ, D

k
ψ)→ (D?

ϕ, D
?
ψ) and

dH(Dk
ϕ, D

?
ϕ) = O(λ(K)2k), dH(Dk

ψ, D
?
ψ) = O(λ(K)2k), (A.20)

where D?
ϕ, D

?
ψ are the optimal solutions. Moreover,

dH(Dk
ϕ, D

?
ϕ) 6

dH(γk1n, µ)

1− λ(K)2
, (A.21)

dH(Dk
ψ, D

?
ψ) 6

dH(γk1n, ν)

1− λ(K)2
, (A.22)

where γk = diag(Dk
ϕ)K diag(Dk

ψ). Last, one has

|| log(γk)− log(γ?)||∞ 6 dH(Dk
ϕ, D

?
ϕ) + dH(Dk

ψ, D
?
ψ). (A.23)

where γ? is the unique solution to (1.2).

Proof. Notice that for any (u, v) ∈ (Rn+,?)2, on has

dH(u, v) = dH(u/v,1n) = dH(1n/u,1n/v).

This shows that

dH(Dk
ϕ, D

?
ϕ) = dH(

µ

KDk
ψ

,
µ

KD?
ψ

) = dH(KDk
ψ,KD

?
ψ) 6 λ(K)dH(Dk

ψ, D
?
ψ),

where we used Theorem A.2. This shows (A.20). By using triangular inequality we have

dH(Dk
ϕ, D

?
ϕ) 6 dH(Dk+1

ϕ , Dk
ϕ) + dH(Dk+1

ϕ , D?
ϕ)

6 dH(
µ

KDk
ψ

, Dk
ϕ) + λ(K)dH(Dk

ϕ, D
?
ϕ)

= dH(µ,Dk
ϕ � (KDk

ψ)) + λ(K)2dH(Dk
ϕ, D

?
ϕ)

= dH(µ, γk1n) + λ(K)2dH(Dk
ϕ, D

?
ϕ),

where � denotes the element wise multiplication. (A.22) can be proved in an analogous
way. (A.23) is trivial.
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