Entropic Optimal Transport

Luca Nenna

(LMO) Université Paris-Saclay

Lecture 2, OT

Image: A math the second se

23/02/2022

From deterministic to stochastic matching

Figure: G. Peyre's twitter account

23/02/2022

From deterministic to stochastic matching

Figure: G. Peyre's twitter account

23/02/2022

From deterministic to stochastic matching

Figure: G. Peyre's twitter account

Luca Nenna 🛛	(LMO))
--------------	-------	---

23/02/2022

From deterministic to stochastic matching

Figure: G. Peyre's twitter account

23/02/2022

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ (N = 512), we have

Figure: Marginals μ and ν

Figure: $\epsilon = 60/N$

Image: Image:

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ (N = 512), we have

Figure: Marginals μ and ν

Figure: $\epsilon = 40/N$

Image: Image:

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ (N = 512), we have

Figure: Marginals μ and ν

Figure: $\epsilon = 20/N$

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ (N = 512), we have

Figure: Marginals μ and ν

Figure: $\epsilon = 10/N$

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ (N = 512), we have

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ (N = 512), we have

